Do you want to publish a course? Click here

Deflection and gravitational lensing of null and timelike signals in general asymptotically (anti-)de Sitter spacetimes

96   0   0.0 ( 0 )
 Added by Junji Jia
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The deflection and gravitational lensing of light and massive particles in arbitrary static, spherically symmetric and asymptotically (anti-)de Sitter spacetimes are considered in this work. We first proved that for spacetimes whose metric satisfying certain conditions, the deflection of null rays with fixed closest distance will not depend on the cosmological constant $Lambda$, while that of timelike signals and the apparent angle in gravitational lensing still depend on $Lambda$. A two-step perturbative method is then developed to compute the change of the angular coordinate and total travel time in the weak field limit. The results are quasi-series of two small quantities, with the finite distance effect of the source/detector naturally taken into account. These results are verified by applying to some known de Sitter spacetimes. Using an exact gravitational lensing equation, we solved the apparent angles of the images and time delays between them and studied the effect of $Lambda$ on them. It is found that generally, a small positive $Lambda$ will decrease the apparent angle of images from both sides of the lens and increase the time delay between them. The time delay between signals from the same side of the lens but with different energy however, will be decreased by $Lambda$.



rate research

Read More

We provide a prescription to compute the gravitational multipole moments of compact objects for asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational multipole moments in terms of Noether charges associated to specific vector fields, within the residual harmonic gauge, dubbed multipole symmetries. We first derive the multipole symmetries for spacetimes which are asymptotically de Sitter; we also show that these symmetry vector fields eliminate the non-propagating degrees of freedom from the linearized gravitational wave equation in a suitable gauge. We then apply our prescription to the Kerr-de Sitter black hole and compute its multipole structure. Our result recovers the Geroch-Hansen moments of the Kerr black hole in the limit of vanishing cosmological constant.
73 - Haotian Liu , Junji Jia 2020
A perturbative method to compute the total travel time of both null and lightlike rays in arbitrary static spherically symmetric spacetimes in the weak field limit is proposed. The resultant total time takes a quasi-series form of the impact parameter. The coefficient of this series at a certain order $n$ is shown to be determined by the asymptotic expansion of the metric functions to the order $n+1$. To the leading order(s), the time delay, as well as the difference between the time delays of two kinds of relativistic signals, is then shown to take a universal form for all SSS spacetimes. This universal form depends on the mass $M$ and a post-Newtonian parameter $gamma$ of the spacetime. The analytical result is numerically verified using the central black hole of M87 as the gravitational lensing center.
We discuss dynamics of massive Klein-Gordon fields in two-dimensional Anti-de Sitter spacetimes ($AdS_2$), in particular conserved quantities and non-modal instability on the future Poincare horizon called, respectively, the Aretakis constants and the Aretakis instability. We find out the geometrical meaning of the Aretakis constants and instability in a parallel-transported frame along a null geodesic, i.e., some components of the higher-order covariant derivatives of the field in the parallel-transported frame are constant or unbounded at the late time, respectively. Because $AdS_2$ is maximally symmetric, any null hypersurfaces have the same geometrical properties. Thus, if we prepare parallel-transported frames along any null hypersurfaces, we can show that the same instability emerges not only on the future Poincare horizon but also on any null hypersurfaces. This implies that the Aretakis instability in $AdS_2$ is the result of singular behaviors of the higher-order covariant derivatives of the fields on the whole $AdS$ infinity, rather than a blow-up on a specific null hypersurface. It is also discussed that the Aretakis constants and instability are related to the conformal Killing tensors. We further explicitly demonstrate that the Aretakis constants can be derived from ladder operators constructed from the spacetime conformal symmetry.
In this work we address the study of null geodesics in the background of Reissner-Nordstrom Anti de Sitter black holes. We compute the exact trajectories in terms of elliptic functions of Weierstrass, obtaining a detailed description of the orbits in terms of charge, mass and the cosmological constant. The trajectories of the photon are classified using the impact parameter.
We study the fully nonlinear dynamics of black hole spontaneous scalarizations in Einstein-Maxwell scalar theory with coupling function $f(phi)=e^{-bphi^{2}}$, which can transform usual Reissner-Nordstrom Anti-de Sitter (RN-AdS) black holes into hairy black holes. Fixing the Arnowitt-Deser-Misner mass of the system, the initial scalar perturbation will destroy the original RN-AdS black hole and turn it into a hairy black hole provided that the constant $-b$ in the coupling function and the charge of the original black hole are sufficiently large, while the cosmological constant is small enough. In the scalarization process, we observe that the black hole irreducible mass initially increases exponentially, then it approaches to and finally saturates at a finite value. Choosing stronger coupling and larger black hole charge, we find that the black hole mass exponentially grows earlier and it takes a longer time for a hairy black hole to be developed and stabilized. We further examine phase structure properties in the scalarization process and confirm the observations in the non-linear dynamical study.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا