New constructions of $q$-Ary 2-D Z-Complementary Array Pairs


Abstract in English

This paper is devoted to sequences and focuses on designing new two-dimensional (2-D) Z-complementary array pairs (ZCAPs) by exploring two promising approaches. A ZCAP is a pair of 2-D arrays, whose 2-D autocorrelation sum gives zero value at all time shifts in a zone around the $(0,0)$ time shift, except the $(0,0)$ time shift. The first approach investigated in this paper uses a one-dimensional (1-D) Z-complementary pair (ZCP), which is an extension of the 1-D Golay complementary pair (GCP) where the autocorrelations of constituent sequences are complementary within a zero correlation zone (ZCZ). The second approach involves directly generalized Boolean functions (which are important components with many applications, particularly in (symmetric) cryptography). Along with this paper, new construction of 2-D ZCAPs is proposed based on 1-D ZCP, and direct construction of 2-D ZCAPs is also offered directly by 2-D generalized Boolean functions. Compared to existing constructions based on generalized Boolean functions, our proposed construction covers all of them. ZCZ sequences are a class of spreading sequences having ideal auto-correlation and cross-correlation in a zone around the origin. In recent years, they have been extensively studied due to their crucial applications, particularly in quasi-synchronous code division multiple access systems. Our proposed 2-D ZCAPs based on 2-D generalized Boolean functions have larger 2-D $mathrm{ZCZ}_{mathrm{ratio}}=frac{6}{7}$. Compared to the construction based on ZCPs, our proposed 2-D ZCAPs also have the largest 2-D $mathrm{ZCZ}_{mathrm{ratio}}$.

Download