Do you want to publish a course? Click here

MIPE: A Metric Independent Pipeline for Effective Code-Mixed NLG Evaluation

100   0   0.0 ( 0 )
 Added by Vivek Srivastava
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Code-mixing is a phenomenon of mixing words and phrases from two or more languages in a single utterance of speech and text. Due to the high linguistic diversity, code-mixing presents several challenges in evaluating standard natural language generation (NLG) tasks. Various widely popular metrics perform poorly with the code-mixed NLG tasks. To address this challenge, we present a metric independent evaluation pipeline MIPE that significantly improves the correlation between evaluation metrics and human judgments on the generated code-mixed text. As a use case, we demonstrate the performance of MIPE on the machine-generated Hinglish (code-mixing of Hindi and English languages) sentences from the HinGE corpus. We can extend the proposed evaluation strategy to other code-mixed language pairs, NLG tasks, and evaluation metrics with minimal to no effort.



rate research

Read More

Natural Language Generation (NLG) evaluation is a multifaceted task requiring assessment of multiple desirable criteria, e.g., fluency, coherency, coverage, relevance, adequacy, overall quality, etc. Across existing datasets for 6 NLG tasks, we observe that the human evaluation scores on these multiple criteria are often not correlated. For example, there is a very low correlation between human scores on fluency and data coverage for the task of structured data to text generation. This suggests that the current recipe of proposing new automatic evaluation metrics for NLG by showing that they correlate well with scores assigned by humans for a single criteria (overall quality) alone is inadequate. Indeed, our extensive study involving 25 automatic evaluation metrics across 6 different tasks and 18 different evaluation criteria shows that there is no single metric which correlates well with human scores on all desirable criteria, for most NLG tasks. Given this situation, we propose CheckLists for better design and evaluation of automatic metrics. We design templates which target a specific criteria (e.g., coverage) and perturb the output such that the quality gets affected only along this specific criteria (e.g., the coverage drops). We show that existing evaluation metrics are not robust against even such simple perturbations and disagree with scores assigned by humans to the perturbed output. The proposed templates thus allow for a fine-grained assessment of automatic evaluation metrics exposing their limitations and will facilitate better design, analysis and evaluation of such metrics.
Recent trends in NLP research have raised an interest in linguistic code-switching (CS); modern approaches have been proposed to solve a wide range of NLP tasks on multiple language pairs. Unfortunately, these proposed methods are hardly generalizable to different code-switched languages. In addition, it is unclear whether a model architecture is applicable for a different task while still being compatible with the code-switching setting. This is mainly because of the lack of a centralized benchmark and the sparse corpora that researchers employ based on their specific needs and interests. To facilitate research in this direction, we propose a centralized benchmark for Linguistic Code-switching Evaluation (LinCE) that combines ten corpora covering four different code-switched language pairs (i.e., Spanish-English, Nepali-English, Hindi-English, and Modern Standard Arabic-Egyptian Arabic) and four tasks (i.e., language identification, named entity recognition, part-of-speech tagging, and sentiment analysis). As part of the benchmark centralization effort, we provide an online platform at ritual.uh.edu/lince, where researchers can submit their results while comparing with others in real-time. In addition, we provide the scores of different popular models, including LSTM, ELMo, and multilingual BERT so that the NLP community can compare against state-of-the-art systems. LinCE is a continuous effort, and we will expand it with more low-resource languages and tasks.
Abstract Meaning Representation (AMR) is a recently designed semantic representation language intended to capture the meaning of a sentence, which may be represented as a single-rooted directed acyclic graph with labeled nodes and edges. The automatic evaluation of this structure plays an important role in the development of better systems, as well as for semantic annotation. Despite there is one available metric, smatch, it has some drawbacks. For instance, smatch creates a self-relation on the root of the graph, has weights for different error types, and does not take into account the dependence of the elements in the AMR structure. With these drawbacks, smatch masks several problems of the AMR parsers and distorts the evaluation of the AMRs. In view of this, in this paper, we introduce an extended metric to evaluate AMR parsers, which deals with the drawbacks of the smatch metric. Finally, we compare both metrics, using four well-known AMR parsers, and we argue that our metric is more refined, robust, fairer, and faster than smatch.
QuestEval is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward, as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QuestEvals code and models available for reproducibility purpose, as part of the QuestEval project.
209 - Jing Gu , Qingyang Wu , Zhou Yu 2020
Automatic evaluation for open-ended natural language generation tasks remains a challenge. Existing metrics such as BLEU show a low correlation with human judgment. We propose a novel and powerful learning-based evaluation metric: Perception Score. The method measures the overall quality of the generation and scores holistically instead of only focusing on one evaluation criteria, such as word overlapping. Moreover, it also shows the amount of uncertainty about its evaluation result. By connecting the uncertainty, Perception Score gives a more accurate evaluation for the generation system. Perception Score provides state-of-the-art results on two conditional generation tasks and two unconditional generation tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا