Do you want to publish a course? Click here

Variant interpretation using population databases: lessons from gnomAD

58   0   0.0 ( 0 )
 Added by Sanna Gudmundsson
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Reference population databases are an essential tool in variant and gene interpretation. Their use guides the identification of pathogenic variants amidst the sea of benign variation present in every human genome, and supports the discovery of new disease-gene relationships. The Genome Aggregation Database (gnomAD) is currently the largest and most widely-used publicly available collection of population variation from harmonized sequencing data. The data is available through the online gnomAD browser (https://gnomad.broadinstitute.org/) that enables rapid and intuitive variant analysis. This review provides guidance on the content of the gnomAD browser, and its usage for variant and gene interpretation. We will introduce key features including allele frequency, per-base expression levels, and constraint scores, and provide guidance on how to use these in analysis, with a focus on the interpretation of candidate variants and novel genes in rare disease.



rate research

Read More

Background: Several sources of noise obfuscate the identification of single nucleotide variation (SNV) in next generation sequencing data. For instance, errors may be introduced during library construction and sequencing steps. In addition, the reference genome and the algorithms used for the alignment of the reads are further critical factors determining the efficacy of variant calling methods. It is crucial to account for these factors in individual sequencing experiments. Results: We introduce a simple data-adaptive model for variant calling. This model automatically adjusts to specific factors such as alignment errors. To achieve this, several characteristics are sampled from sites with low mismatch rates, and these are used to estimate empirical log-likelihoods. These likelihoods are then combined to a score that typically gives rise to a mixture distribution. From these we determine a decision threshold to separate potentially variant sites from the noisy background. Conclusions: In simulations we show that our simple proposed model is competitive with frequently used much more complex SNV calling algorithms in terms of sensitivity and specificity. It performs specifically well in cases with low allele frequencies. The application to next-generation sequencing data reveals stark differences of the score distributions indicating a strong influence of data specific sources of noise. The proposed model is specifically designed to adjust to these differences.
Recent genetic studies and whole-genome sequencing projects have greatly improved our understanding of human variation and clinically actionable genetic information. Smaller ethnic populations, however, remain underrepresented in both individual and large-scale sequencing efforts and hence present an opportunity to discover new variants of biomedical and demographic significance. This report describes the sequencing and analysis of a genome obtained from an individual of Serbian origin, introducing tens of thousands of previously unknown variants to the currently available pool. Ancestry analysis places this individual in close proximity of the Central and Eastern European populations; i.e., closest to Croatian, Bulgarian and Hungarian individuals and, in terms of other Europeans, furthest from Ashkenazi Jewish, Spanish, Sicilian, and Baltic individuals. Our analysis confirmed gene flow between Neanderthal and ancestral pan-European populations, with similar contributions to the Serbian genome as those observed in other European groups. Finally, to assess the burden of potentially disease-causing/clinically relevant variation in the sequenced genome, we utilized manually curated genotype-phenotype association databases and variant-effect predictors. We identified several variants that have previously been associated with severe early-onset disease that is not evident in the proband, as well as variants that could yet prove to be clinically relevant to the proband over the next decades. The presence of numerous private and low-frequency variants along with the observed and predicted disease-causing mutations in this genome exemplify some of the global challenges of genome interpretation, especially in the context of understudied ethnic groups.
The leaves of the Coriandrum sativum plant, known as cilantro or coriander, are widely used in many cuisines around the world. However, far from being a benign culinary herb, cilantro can be polarizing---many people love it while others claim that it tastes or smells foul, often like soap or dirt. This soapy or pungent aroma is largely attributed to several aldehydes present in cilantro. Cilantro preference is suspected to have a genetic component, yet to date nothing is known about specific mechanisms. Here we present the results of a genome-wide association study among 14,604 participants of European ancestry who reported whether cilantro tasted soapy, with replication in a distinct set of 11,851 participants who declared whether they liked cilantro. We find a single nucleotide polymorphism (SNP) significantly associated with soapy-taste detection that is confirmed in the cilantro preference group. This SNP, rs72921001, (p=6.4e-9, odds ratio 0.81 per A allele) lies within a cluster of olfactory receptor genes on chromosome 11. Among these olfactory receptor genes is OR6A2, which has a high binding specificity for several of the aldehydes that give cilantro its characteristic odor. We also estimate the heritability of cilantro soapy-taste detection in our cohort, showing that the heritability tagged by common SNPs is low, about 0.087. These results confirm that there is a genetic component to cilantro taste perception and suggest that cilantro dislike may stem from genetic variants in olfactory receptors. We propose that OR6A2 may be the olfactory receptor that contributes to the detection of a soapy smell from cilantro in European populations.
115 - Sigve Nakken 2021
Summary: Interpretation and prioritization of candidate hits from genome-scale screening experiments represent a significant analytical challenge, particularly when it comes to an understanding of cancer relevance. We have developed a flexible tool that substantially refines gene set interpretability in cancer by leveraging a broad scope of prior knowledge unavailable in existing frameworks, including data on target tractabilities, tumor-type association strengths, protein complexes and protein-protein interactions, tissue and cell-type expression specificities, subcellular localizations, prognostic associations, cancer dependency maps, and information on genes of poorly defined or unknown function. Availability: oncoEnrichR is developed in R, and is freely available as a stand-alone R package. A web interface to oncoEnrichR is provided through the Galaxy framework (https://oncotools.elixir.no). All code is open-source under the MIT license, with documentation, example datasets and and instructions for usage available at https://github.com/sigven/oncoEnrichR/ Contact: [email protected]
91 - Jie Liu , Xiaotian Wu , Kai Zhang 2020
With the booming of next generation sequencing technology and its implementation in clinical practice and life science research, the need for faster and more efficient data analysis methods becomes pressing in the field of sequencing. Here we report on the evaluation of an optimized germline mutation calling pipeline, HummingBird, by assessing its performance against the widely accepted BWA-GATK pipeline. We found that the HummingBird pipeline can significantly reduce the running time of the primary data analysis for whole genome sequencing and whole exome sequencing while without significantly sacrificing the variant calling accuracy. Thus, we conclude that expansion of such software usage will help to improve the primary data analysis efficiency for next generation sequencing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا