Do you want to publish a course? Click here

Cross-Sentence Temporal and Semantic Relations in Video Activity Localisation

72   0   0.0 ( 0 )
 Added by Jiabo Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video activity localisation has recently attained increasing attention due to its practical values in automatically localising the most salient visual segments corresponding to their language descriptions (sentences) from untrimmed and unstructured videos. For supervised model training, a temporal annotation of both the start and end time index of each video segment for a sentence (a video moment) must be given. This is not only very expensive but also sensitive to ambiguity and subjective annotation bias, a much harder task than image labelling. In this work, we develop a more accurate weakly-supervised solution by introducing Cross-Sentence Relations Mining (CRM) in video moment proposal generation and matching when only a paragraph description of activities without per-sentence temporal annotation is available. Specifically, we explore two cross-sentence relational constraints: (1) Temporal ordering and (2) semantic consistency among sentences in a paragraph description of video activities. Existing weakly-supervised techniques only consider within-sentence video segment correlations in training without considering cross-sentence paragraph context. This can mislead due to ambiguous expressions of individual sentences with visually indiscriminate video moment proposals in isolation. Experiments on two publicly available activity localisation datasets show the advantages of our approach over the state-of-the-art weakly supervised methods, especially so when the video activity descriptions become more complex.



rate research

Read More

Temporal sentence grounding in videos aims to detect and localize one target video segment, which semantically corresponds to a given sentence. Existing methods mainly tackle this task via matching and aligning semantics between a sentence and candidate video segments, while neglect the fact that the sentence information plays an important role in temporally correlating and composing the described contents in videos. In this paper, we propose a novel semantic conditioned dynamic modulation (SCDM) mechanism, which relies on the sentence semantics to modulate the temporal convolution operations for better correlating and composing the sentence related video contents over time. More importantly, the proposed SCDM performs dynamically with respect to the diverse video contents so as to establish a more precise matching relationship between sentence and video, thereby improving the temporal grounding accuracy. Extensive experiments on three public datasets demonstrate that our proposed model outperforms the state-of-the-arts with clear margins, illustrating the ability of SCDM to better associate and localize relevant video contents for temporal sentence grounding. Our code for this paper is available at https://github.com/yytzsy/SCDM .
In this paper, we investigate the problem of unpaired video-to-video translation. Given a video in the source domain, we aim to learn the conditional distribution of the corresponding video in the target domain, without seeing any pairs of corresponding videos. While significant progress has been made in the unpaired translation of images, directly applying these methods to an input video leads to low visual quality due to the additional time dimension. In particular, previous methods suffer from semantic inconsistency (i.e., semantic label flipping) and temporal flickering artifacts. To alleviate these issues, we propose a new framework that is composed of carefully-designed generators and discriminators, coupled with two core objective functions: 1) content preserving loss and 2) temporal consistency loss. Extensive qualitative and quantitative evaluations demonstrate the superior performance of the proposed method against previous approaches. We further apply our framework to a domain adaptation task and achieve favorable results.
In this paper, we study the problem of weakly-supervised temporal grounding of sentence in video. Specifically, given an untrimmed video and a query sentence, our goal is to localize a temporal segment in the video that semantically corresponds to the query sentence, with no reliance on any temporal annotation during training. We propose a two-stage model to tackle this problem in a coarse-to-fine manner. In the coarse stage, we first generate a set of fixed-length temporal proposals using multi-scale sliding windows, and match their visual features against the sentence features to identify the best-matched proposal as a coarse grounding result. In the fine stage, we perform a fine-grained matching between the visual features of the frames in the best-matched proposal and the sentence features to locate the precise frame boundary of the fine grounding result. Comprehensive experiments on the ActivityNet Captions dataset and the Charades-STA dataset demonstrate that our two-stage model achieves compelling performance.
Compared with image scene parsing, video scene parsing introduces temporal information, which can effectively improve the consistency and accuracy of prediction. In this paper, we propose a Spatial-Temporal Semantic Consistency method to capture class-exclusive context information. Specifically, we design a spatial-temporal consistency loss to constrain the semantic consistency in spatial and temporal dimensions. In addition, we adopt an pseudo-labeling strategy to enrich the training dataset. We obtain the scores of 59.84% and 58.85% mIoU on development (test part 1) and testing set of VSPW, respectively. And our method wins the 1st place on VSPW challenge at ICCV2021.
Human activity, which usually consists of several actions, generally covers interactions among persons and or objects. In particular, human actions involve certain spatial and temporal relationships, are the components of more complicated activity, and evolve dynamically over time. Therefore, the description of a single human action and the modeling of the evolution of successive human actions are two major issues in human activity recognition. In this paper, we develop a method for human activity recognition that tackles these two issues. In the proposed method, an activity is divided into several successive actions represented by spatio temporal patterns, and the evolution of these actions are captured by a sequential model. A refined comprehensive spatio temporal graph is utilized to represent a single action, which is a qualitative representation of a human action incorporating both the spatial and temporal relations of the participant objects. Next, a discrete hidden Markov model is applied to model the evolution of action sequences. Moreover, a fully automatic partition method is proposed to divide a long-term human activity video into several human actions based on variational objects and qualitative spatial relations. Finally, a hierarchical decomposition of the human body is introduced to obtain a discriminative representation for a single action. Experimental results on the Cornell Activity Dataset demonstrate the efficiency and effectiveness of the proposed approach, which will enable long videos of human activity to be better recognized.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا