Artificial Neural Networks for Galaxy Clustering. Learning from the two-point correlation function of BOSS galaxies


Abstract in English

The increasingly large amount of cosmological data coming from ground-based and space-borne telescopes requires highly efficient and fast enough data analysis techniques to maximise the scientific exploitation. In this work, we explore the capabilities of supervised machine learning algorithms to learn the properties of the large-scale structure of the Universe, aiming at constraining the matter density parameter, Omega m. We implement a new Artificial Neural Network for a regression data analysis, and train it on a large set of galaxy two-point correlation functions in standard cosmologies with different values of Omega m. The training set is constructed from log-normal mock catalogues which reproduce the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. The presented statistical method requires no specific analytical model to construct the likelihood function, and runs with negligible computational cost, after training. We test this new Artificial Neural Network on real BOSS data, finding Omega m=0.309p/m0.008, which is remarkably consistent with standard analysis results.

Download