Do you want to publish a course? Click here

Anomalous magnetic noise in imperfect flat bands in the topological magnet Dy2Ti2O7

83   0   0.0 ( 0 )
 Added by S Grigera
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin ice compound Dy_2Ti_2O_7 stands out as the first topological magnet in three dimensions, with its tell-tale emergent fractionalized magnetic monopole excitations. Its real-time dynamical properties have been an enigma from the very beginning. Using ultrasensitive, non-invasive SQUID measurements, we show that Dy_2Ti_2O_7 exhibits a highly anomalous noise spectrum, in three qualitatively different regimes: equilibrium spin ice, a `frozen regime extending to ultra-low temperatures, as well as a high-temperature `anomalous paramagnet. We show that in the simplest model of spin ice, the dynamics is not anomalous, and we present several distinct mechanisms which give rise to a coloured noise spectrum. In addition, we identify the structure of the single-ion dynamics as a crucial ingredient for any modelling. Thus, the dynamics of spin ice Dy_2Ti_2O_7 reflects the interplay of local dynamics with emergent topological degrees of freedom and a frustration-generated imperfectly flat energy landscape, and as such should be relevant for a broad class of magnetic materials.



rate research

Read More

163 - S. A. Parameswaran , R. Roy , 2013
We present a pedagogical review of the physics of fractional Chern insulators with a particular focus on the connection to the fractional quantum Hall effect. While the latter conventionally arises in semiconductor heterostructures at low temperatures and in high magnetic fields, interacting Chern insulators at fractional band filling may host phases with the same topological properties, but stabilized at the lattice scale, potentially leading to high-temperature topological order. We discuss the construction of topological flat band models, provide a survey of numerical results, and establish the connection between the Chern band and the continuum Landau problem. We then briefly summarize various aspects of Chern band physics that have no natural continuum analogs, before turning to a discussion of possible experimental realizations. We close with a survey of future directions and open problems, as well as a discussion of extensions of these ideas to higher dimensions and to other topological phases.
The effects of downfolding a Brillouin zone can open gaps and quench the kinetic energy by flattening bands. Quasiperiodic systems are extreme examples of this process, which leads to new phases and critical eigenstates. We analytically and numerically investigate these effects in a two dimensional topological insulator with a quasiperiodic potential and discover a complex phase diagram. We study the nature of the resulting eigenstate quantum phase transitions; a quasiperiodic potential can make a trivial insulator topological and induce topological insulator-to-metal phase transitions through a unique universality class distinct from random systems. This wealth of critical behavior occurs concomitantly with the quenching of the kinetic energy, resulting in flat topological bands that could serve as a platform to realize the fractional quantum Hall effect without a magnetic field.
77 - H. Zhang , X. Feng , T. Heitmann 2020
Topological magnon is a vibrant research field gaining more and more attention in the past few years. Among many theoretical proposals and limited experimental studies, ferromagnetic Kagome lattice emerges as one of the most elucidating systems. Here we report neutron scattering studies of YMn6Sn6, a metallic system consisting of ferromagnetic Kagome planes. This system undergoes a commensurate-to-incommensurate antiferromagnetic phase transition upon cooling with the incommensurability along the out-of-plane direction. We observe magnon band gap opening at the symmetry-protected K points and ascribe this feature to the antisymmetric Dzyaloshinskii-Moriya (DM) interactions. Our observation supports the existence of topological Dirac magnons in both the commensurate collinear and incommensurate coplanar magnetic orders, which is further corroborated by symmetry analysis. This finding places YMn6Sn6 as a promising candidate for room-temperature magnon spintronics applications.
Monolayer graphene placed with a twist on top of AB-stacked bilayer graphene hosts topological flat bands in a wide range of twist angles. The dispersion of these bands and gaps between them can be efficiently controlled by a perpendicular electric field, which induces topological transitions accompanied by changes of the Chern numbers. In the regime where the applied electric field induces gaps between the flat bands, we find a relatively uniform distribution of the Berry curvature. Consequently, interaction-induced valley- and/or spin-polarized states at integer filling factors are energetically favorable. In particular, we predict a quantum anomalous Hall state at filling factor $ u=1$ for a range of twist angles $1^circ<theta <1.4^circ$. Furthermore, to characterize the response of the system to magnetic field, we computed the Hofstadter butterfly and the Wannier plot, which can be used to probe the dispersion and topology of the flat bands in this material.
131 - Zhenxiang Gao , Zhihao Lan 2020
We introduce a non-Abelian kagome lattice model that has both time-reversal and inversion symmetries and study the flat band physics and topological phases of this model. Due to the coexistence of both time-reversal and inversion symmetries, the energy bands consist of three doubly degenerate bands whose energy and conditions for the presence of flat bands could be obtained analytically, allowing us to tune the flat band with respect to the other two dispersive bands from the top to the middle and then to the bottom of the three bands. We further study the gapped phases of the model and show that they belong to the same phase as the band gaps only close at discrete points of the parameter space, making any two gapped phases adiabatically connected to each other without closing the band gap. Using the Pfaffian approach based on the time-reversal symmetry and parity characterization from the inversion symmetry, we calculate the bulk topological invariants and demonstrate that the unique gapped phases belong to the $Z_2$ quantum spin Hall phase, which is further confirmed by the edge state calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا