Do you want to publish a course? Click here

Meridional variations of C$_2$H$_2$ in Jupiters stratosphere from Juno UVS observations

89   0   0.0 ( 0 )
 Added by Rohini Giles
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The UVS instrument on the Juno mission records far-ultraviolet reflected sunlight from Jupiter. These spectra are sensitive to the abundances of chemical species in the upper atmosphere and to the distribution of the stratospheric haze layer. We combine observations from the first 30 perijoves of the mission in order to study the meridional distribution of acetylene (C$_2$H$_2$) in Jupiters stratosphere. We find that the abundance of C$_2$H$_2$ decreases towards the poles by a factor of 2-4, in agreement with previous analyses of mid-infrared spectra. This result is expected from insolation rates: near the equator, the UV solar flux is higher, allowing more C$_2$H$_2$ to be generated from the UV photolysis of CH$_4$. The decrease in abundance towards the poles suggests that horizontal mixing rates are not rapid enough to homogenize the latitudinal distribution.



rate research

Read More

The UVS instrument on the Juno mission recorded transient bright emission from a point source in Jupiters atmosphere. The spectrum shows that the emission is consistent with a 9600-K blackbody located 225 km above the 1-bar level and the duration of the emission was between 17 ms and 150 s. These characteristics are consistent with a bolide in Jupiters atmosphere. Based on the energy emitted, we estimate that the impactor had a mass of 250-5000 kg, which corresponds to a diameter of 1-4 m. By considering all observations made with Juno UVS over the first 27 perijoves of the mission, we estimate an impact flux rate of 24,000 per year for impactors with masses greater than 250-5000 kg.
87 - N R Pinh~ao 2019
This work presents swarm parameters of electrons (the bulk drift velocity, the bulk longitudinal component of the diffusion tensor, and the effective ionization frequency) in C$_2$H$_n$, with $n =$ 2, 4 and 6, measured in a scanning drift tube apparatus under time-of-flight conditions over a wide range of the reduced electric field, 1 Td $leq,E/N,leq$ 1790 Td (1 Td = $10^{-21}$ Vm$^2$). The effective steady-state Townsend ionization coefficient is also derived from the experimental data. A kinetic simulation of the experimental drift cell allows estimating the uncertainties introduced in the data acquisition procedure and provides a correction factor to each of the measured swarm parameters. These parameters are compared to results of previous experimental studies, as well as to results of various kinetic swarm calculations: solutions of the electron Boltzmann equation under different approximations (multiterm and density gradient expansions) and Monte Carlo simulations. The experimental data are consistent with most of the swarm parameters obtained in earlier studies. In the case of C$_2$H$_2$, the swarm calculations show that the thermally excited vibrational population should not be neglected, in particular, in the fitting of cross sections to swarm results.
Spatially resolved maps of Jupiters far-infrared 17-37 $mu$m hydrogen-helium collision-induced spectrum were acquired by the FORCAST instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA) in May 2014. Spectral scans in two grisms covered the broad S(0) and S(1) absorption lines, in addition to contextual imaging in eight broad-band filters (5-37 $mu$m) with spatial resolutions of 2-4. The spectra were inverted to map the zonal-mean temperature and para-H$_2$ distribution ($f_p$, the fraction of the para spin isomer with respect to the ortho spin isomer) in Jupiters upper troposphere (the 100-700 mbar range). We compared these to a reanalysis of Voyager-1 and -2 IRIS spectra covering the same spectral range. Para-H$_2$ increases from equator to pole, with low-$f_p$ air at the equator representing sub-equilibrium conditions (i.e., less para-H$_2$ than expected from thermal equilibration), and high-$f_p$ air and possible super-equilibrium at higher latitudes. In particular, we confirm the continued presence of a region of high-$f_p$ air at high northern latitudes discovered by Voyager/IRIS, and an asymmetry with generally higher $f_p$ in the north than in the south. We note that existing collision-induced absorption databases lack opacity from (H$_2$)$_2$ dimers, leading to under-prediction of the absorption near the S(0) and S(1) peaks. There appears to be no spatial correlation between para-H$_2$ and tropospheric ammonia, phosphine and cloud opacity derived from Voyager/IRIS at mid-infrared wavelengths (7-15 $mu$m). We note, however, that para-H$_2$ tracks the similar latitudinal distribution of aerosols within Jupiters upper tropospheric and stratospheric hazes observed in reflected sunlight, suggesting that catalysis of hydrogen equilibration within the hazes (and not the main clouds) may govern the equator-to-pole gradient. [Abridged]
Infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out from July to September 2015, i.e., around perihelion (13 August 2015), with the high-resolution channel of the VIRTIS instrument onboard Rosetta. We present the analysis of fluorescence emission lines of H$_2$O, CO$_2$, $^{13}$CO$_2$, OCS, and CH$_4$ detected in limb sounding with the field of view at 2.7-5 km from the comet centre. Measurements are sampling outgassing from the illuminated southern hemisphere, as revealed by H$_2$O and CO$_2$ raster maps, which show anisotropic distributions, aligned along the projected rotation axis. An abrupt increase of water production is observed six days after perihelion. In the mean time, CO$_2$, CH$_4$, and OCS abundances relative to water increased by a factor of 2 to reach mean values of 32%, 0.47%, and 0.18%, respectively, averaging post-perihelion data. We interpret these changes as resulting from the erosion of volatile-poor surface layers. Sustained dust ablation due to the sublimation of water ice maintained volatile-rich layers near the surface until at least the end of the considered period, as expected for low thermal inertia surface layers. The large abundance measured for CO$_2$ should be representative of the 67P nucleus original composition, and indicates that 67P is a CO$_2$-rich comet. Comparison with abundance ratios measured in the northern hemisphere shows that seasons play an important role in comet outgassing. The low CO$_2$/H$_2$O values measured above the illuminated northern hemisphere are not original, but the result of the devolatilization of the uppermost layers.
NASAs Spitzer Infrared Spectrometer (IRS) acquired mid-infrared (5-37 microns) disc-averaged spectra of Uranus very near to its equinox in December 2007. A mean spectrum was constructed from observations of multiple central meridian longitudes, spaced equally around the planet, which has provided the opportunity for the most comprehensive globally-averaged characterisation of Uranus temperature and composition ever obtained (Orton et al., 2014 a [arXiv:1407.2120], b [arXiv:1407.2118]). In this work we analyse the disc-averaged spectra at four separate central meridian longitudes to reveal significant longitudinal variability in thermal emission occurring in Uranus stratosphere during the 2007 equinox. We detect a variability of up to 15% at wavelengths sensitive to stratospheric methane, ethane and acetylene at the ~0.1-mbar level. The tropospheric hydrogen-helium continuum and deuterated methane absorption exhibit a negligible variation (less than 2%), constraining the phenomenon to the stratosphere. Building on the forward-modelling analysis of the global average study, we present full optimal estimation
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا