Do you want to publish a course? Click here

Virus dynamics in the presence of contact-mediated host dormancy

70   0   0.0 ( 0 )
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

We investigate a stochastic individual-based model for the population dynamics of host-virus systems where the hosts may transition into a dormant state upon contact with virions, thus evading infection. Such a dormancy-based defence mechanism was described in Bautista et al (2015). We first analyse the effect of the dormancy-related model parameters on the probability of invasion of a newly arriving virus into a resident host population. It turns out that the probability of dormancy initiation upon virus contact plays a crucial role, while the lengths of the dormancy periods or the death rate during dormancy are largely irrelevant. Given successful invasion, we then show that the emergence of a persistent virus infection (epidemic) in the host population corresponds to the existence of a coexistence equilibrium for the deterministic many-particle limit of our model. In this context, all dormancy-related parameters have a significant impact. Indeed, while related systems without dormancy may exhibit a Hopf bifurcation, giving rise to a variant of the paradox of enrichment, we argue that the inclusion of dormancy can prevent this loss of stability. Finally, we show that the presence of contact-mediated dormancy enables the host population to maintain higher equilibrium sizes (resp. fitness values) - while still being able to avoid a persistent epidemic - than host populations without this trait, for which high fitness values would imply a high risk for the emergence of a persistent epidemic. This adds a twist to the relevance of reproductive trade-offs usually associated with costly dormancy traits.



rate research

Read More

Although foot-and-mouth disease virus (FMDV) incidence has decreased in South America over the last years, the pathogen still circulates in the region and the risk of re-emergence in previously FMDV-free areas is a veterinary public health concern. In this paper we merge environmental, epidemiological and genetic data to reconstruct spatiotemporal patterns and determinants of FMDV serotypes A and O dispersal in South America. Our dating analysis suggests that serotype A emerged in South America around 1930, while serotype O emerged around 1990. The rate of evolution for serotype A was significantly higher compared to serotype O. Phylogeographic inference identified two well-connected sub networks of viral flow, one including Venezuela, Colombia and Ecuador; another including Brazil, Uruguay and Argentina. The spread of serotype A was best described by geographic distances, while trade of live cattle was the predictor that best explained serotype O spread. Our findings show that the two serotypes have different underlying evolutionary and spatial dynamics and may pose different threats to control programmes. Key-words: Phylogeography, foot-and-mouth disease virus, South America, animal trade.
Amidst the current COVID-19 pandemic, quantifying the effects of strategies that mitigate the spread of infectious diseases is critical. This article presents a compartmental model that addresses the role of random viral testing, follow-up contact tracing, and subsequent isolation of infectious individuals to stabilize the spread of a disease. We propose a branching model and an individual (or agent) based model, both of which capture the stochastic, heterogeneous nature of interactions within a community. The branching model is used to derive new analytical results for the trade-offs between the different mitigation strategies, with the surprising result that a communitys resilience to disease outbreaks is independent of its underlying network structure.
Across the tree of life, populations have evolved the capacity to contend with suboptimal conditions by engaging in dormancy, whereby individuals enter a reversible state of reduced metabolic activity. The resulting seed banks are complex, storing information and imparting memory that gives rise to multi-scale structures and networks spanning collections of cells to entire ecosystems. We outline the fundamental attributes and emergent phenomena associated with dormancy and seed banks, with the vision for a unifying and mathematically based framework that can address problems in the life sciences, ranging from global change to cancer biology.
We propose a physical theory underlying the temporal evolution of competing virus variants that relies on the existence of (quasi) fixed points capturing the large time scale invariance of the dynamics. To motivate our result we first modify the time-honoured compartmental models of the SIR type to account for the existence of competing variants and then show how their evolution can be naturally re-phrased in terms of flow equations ending at quasi fixed points. As the natural next step we employ (near) scale invariance to organise the time evolution of the competing variants within the effective description of the epidemic Renormalization Group framework. We test the resulting theory against the time evolution of COVID-19 virus variants that validate the theory empirically.
The evolutionary dynamics of human Influenza A virus presents a challenging theoretical problem. An extremely high mutation rate allows the virus to escape, at each epidemic season, the host immune protection elicited by previous infections. At the same time, at each given epidemic season a single quasi-species, that is a set of closely related strains, is observed. A non-trivial relation between the genetic (i.e., at the sequence level) and the antigenic (i.e., related to the host immune response) distances can shed light into this puzzle. In this paper we introduce a model in which, in accordance with experimental observations, a simple interaction rule based on spatial correlations among point mutations dynamically defines an immunity space in the space of sequences. We investigate the static and dynamic structure of this space and we discuss how it affects the dynamics of the virus-host interaction. Interestingly we observe a staggered time structure in the virus evolution as in the real Influenza evolutionary dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا