Do you want to publish a course? Click here

Frequency and nature of central molecular outflows in nearby star-forming disk galaxies

75   0   0.0 ( 0 )
 Added by Sophia Stuber
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Central molecular outflows in spiral galaxies are assumed to modulate their host galaxys star formation rate by removing gas from the inner region of the galaxy. Outflows consisting of different gas phases appear to be a common feature in local galaxies, yet, little is known about the frequency of molecular outflows in main sequence galaxies in the nearby universe. We develop a rigorous set of selection criteria, which allow the reliable identification of outflows in large samples of galaxies. Our criteria make use of central spectra, position-velocity diagrams and velocity-integrated intensity maps (line-wing maps). We use this method on high-angular resolution CO(2-1) observations from the PHANGS-ALMA survey, which provides observations of the molecular gas for a homogeneous sample of 90 nearby main sequence galaxies at a resolution of ${sim}100,$pc. We find correlations between the assigned outflow confidence and stellar mass or global star formation rate (SFR). We determine the frequency of central molecular outflows to be $25pm2$% considering all outflow candidates, or $20pm2$% for secure outflows only. Our resulting outflow candidate sample of $16{-}20$ galaxies shows an overall enhanced fraction of active galactic nuclei (AGN) (50%) and bars (89%) compared to the full sample (galaxies with AGN: 24%, with bar: 61%). We extend the trend between mass outflow rates and SFR known for high outflow rates down to lower values ($log_{10}{dot{rm M}_{rm out}},[mathrm{M}_odot~mathrm{yr}^{-1}]<0$). Mass loading factors are of order unity, indicating that these outflows are not efficient in quenching the SFR in main sequence galaxies.



rate research

Read More

It remains a major challenge to derive a theory of cloud-scale ($lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially-resolved ($sim100$ pc) CO-to-H$alpha$ flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10-30 Myr, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $Sigma_{rm H_2}geqslant8$M$_{odot}$pc$^{-2}$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $Sigma_{rm H_2}leqslant8$M$_{odot}$pc$^{-2}$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H$alpha$ (75-90% of the cloud lifetime), GMCs disperse within just 1-5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4-10% These results show that galactic star formation is governed by cloud-scale, environmentally-dependent, dynamical processes driving rapid evolutionary cycling. GMCs and HII regions are the fundamental units undergoing these lifecycles, with mean separations of 100-300 pc in star-forming discs. Future work should characterise the multi-scale physics and mass flows driving these lifecycles.
70 - De-Jian Liu , Ye Xu , Ying-Jie Li 2020
We present a study of molecular outflows using six molecular lines (including 12CO/13CO/C18O/HCO+(J = 1-0) and SiO/CS(J = 2-1)) toward nine nearby high-mass star-forming regions with accurate known distances. This work is based on the high-sensitivity observations obtained with the 14-m millimeter telescope of Purple Mountain Observatory Delingha (PMODLH) observatory. The detection rate of outflows (including 12CO, 13CO, HCO+, and CS) is 100%. However, the emission of SiO was not detected for all sources. The full line widths ($Delta V$) at 3$sigma$ above the baseline of these molecular lines have the relationship $Delta V_{rm ^{12}CO} > Delta V_{rm HCO^{+}} > Delta V_{rm CS} approx Delta V_{rm ^{13}CO} > Delta V_{rm ^{18}CO}$. 12CO and HCO+ can be used to trace relatively high-velocity outflows, while 13CO and CS can be employed to trace relatively low-velocity outflows. The dynamical timescales of the 13CO and CS outflows are longer than those of the 12CO and HCO+ outflows. The mechanical luminosities, masses, mass-loss rates and forces of all outflows (including 12CO, 13CO, HCO+, and CS) are correlated with the bolometric luminosities of their central IRAS sources.
We compare the observed turbulent pressure in molecular gas, $P_mathrm{turb}$, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, $P_mathrm{DE}$. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multi-wavelength data that traces the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that $P_mathrm{turb}$ correlates with, but almost always exceeds the estimated $P_mathrm{DE}$ on kiloparsec scales. This indicates that the molecular gas is over-pressurized relative to the large-scale environment. We show that this over-pressurization can be explained by the clumpy nature of molecular gas; a revised estimate of $P_mathrm{DE}$ on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed $P_mathrm{turb}$ in galaxy disks. We also find that molecular gas with cloud-scale ${P_mathrm{turb}}approx{P_mathrm{DE}}gtrsim{10^5,k_mathrm{B},mathrm{K,cm^{-3}}}$ in our sample is more likely to be self-gravitating, whereas gas at lower pressure appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between $P_mathrm{turb}$ and the observed SFR surface density, $Sigma_mathrm{SFR}$, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between $Sigma_mathrm{SFR}$ and kpc-scale $P_mathrm{DE}$ in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale $P_mathrm{DE}$ reported in previous works.
Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from a relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blue shifted because the redshifted outflows pass into the optically thick Photon Dominated Region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD data base.
We perform a joint-analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionised gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1-0) at 1 resolution with ALMA in 16 edge-on galaxies, which also have 2 spatial resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionised gas (outflow-types), the rest serve as control galaxies. The dataset is complemented by integrated CO(1-0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation is largely confined within their inner effective radius ($rm r_{eff}$), whereas in the control sample the distribution is more diffuse, extending far beyond $rm r_{eff}$. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally-enhanced gas surface density and star-formation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا