Do you want to publish a course? Click here

A hierarchical prior for generalized linear models based on predictions for the mean response

78   0   0.0 ( 0 )
 Added by Ethan Alt
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

There has been increased interest in using prior information in statistical analyses. For example, in rare diseases, it can be difficult to establish treatment efficacy based solely on data from a prospective study due to low sample sizes. To overcome this issue, an informative prior for the treatment effect may be elicited. We develop a novel extension of the conjugate prior of Chen and Ibrahim (2003) that enables practitioners to elicit a prior prediction for the mean response for generalized linear models, treating the prediction as random. We refer to the hierarchical prior as the hierarchical prediction prior. For i.i.d. settings and the normal linear model, we derive cases for which the hyperprior is a conjugate prior. We also develop an extension of the HPP in situations where summary statistics from a previous study are available, drawing comparisons with the power prior. The HPP allows for discounting based on the quality of individual level predictions, having the potential to provide efficiency gains (e.g., lower MSE) where predictions are incompatible with the data. An efficient Markov chain Monte Carlo algorithm is developed. Applications illustrate that inferences under the HPP are more robust to prior-data conflict compared to selected non-hierarchical priors.



rate research

Read More

Field observations form the basis of many scientific studies, especially in ecological and social sciences. Despite efforts to conduct such surveys in a standardized way, observations can be prone to systematic measurement errors. The removal of systematic variability introduced by the observation process, if possible, can greatly increase the value of this data. Existing non-parametric techniques for correcting such errors assume linear additive noise models. This leads to biased estimates when applied to generalized linear models (GLM). We present an approach based on residual functions to address this limitation. We then demonstrate its effectiveness on synthetic data and show it reduces systematic detection variability in moth surveys.
155 - Song Xi Chen , Bin Guo 2014
We consider testing regression coefficients in high dimensional generalized linear models. An investigation of the test of Goeman et al. (2011) is conducted, which reveals that if the inverse of the link function is unbounded, the high dimensionality in the covariates can impose adverse impacts on the power of the test. We propose a test formation which can avoid the adverse impact of the high dimensionality. When the inverse of the link function is bounded such as the logistic or probit regression, the proposed test is as good as Goeman et al. (2011)s test. The proposed tests provide p-values for testing significance for gene-sets as demonstrated in a case study on an acute lymphoblastic leukemia dataset.
This article concerns a class of generalized linear mixed models for clustered data, where the random effects are mapped uniquely onto the grouping structure and are independent between groups. We derive necessary and sufficient conditions that enable the marginal likelihood of such class of models to be expressed in closed-form. Illustrations are provided using the Gaussian, Poisson, binomial and gamma distributions. These models are unified under a single umbrella of conjugate generalized linear mixed models, where conjugate refers to the fact that the marginal likelihood can be expressed in closed-form, rather than implying inference via the Bayesian paradigm. Having an explicit marginal likelihood means that these models are more computationally convenient, which can be important in big data contexts. Except for the binomial distribution, these models are able to achieve simultaneous conjugacy, and thus able to accommodate both unit and group level covariates.
Under measurement constraints, responses are expensive to measure and initially unavailable on most of records in the dataset, but the covariates are available for the entire dataset. Our goal is to sample a relatively small portion of the dataset where the expensive responses will be measured and the resultant sampling estimator is statistically efficient. Measurement constraints require the sampling probabilities can only depend on a very small set of the responses. A sampling procedure that uses responses at most only on a small pilot sample will be called response-free. We propose a response-free sampling procedure mbox{(OSUMC)} for generalized linear models (GLMs). Using the A-optimality criterion, i.e., the trace of the asymptotic variance, the resultant estimator is statistically efficient within a class of sampling estimators. We establish the unconditional asymptotic distribution of a general class of response-free sampling estimators. This result is novel compared with the existing conditional results obtained by conditioning on both covariates and responses. Under our unconditional framework, the subsamples are no longer independent and new martingale techniques are developed for our asymptotic theory. We further derive the A-optimal response-free sampling distribution. Since this distribution depends on population level quantities, we propose the Optimal Sampling Under Measurement Constraints (OSUMC) algorithm to approximate the theoretical optimal sampling. Finally, we conduct an intensive empirical study to demonstrate the advantages of OSUMC algorithm over existing methods in both statistical and computational perspectives.
103 - Yawen Guan , Murali Haran 2019
Spatial generalized linear mixed models (SGLMMs) are popular and flexible models for non-Gaussian spatial data. They are useful for spatial interpolations as well as for fitting regression models that account for spatial dependence, and are commonly used in many disciplines such as epidemiology, atmospheric science, and sociology. Inference for SGLMMs is typically carried out under the Bayesian framework at least in part because computational issues make maximum likelihood estimation challenging, especially when high-dimensional spatial data are involved. Here we provide a computationally efficient projection-based maximum likelihood approach and two computationally efficient algorithms for routinely fitting SGLMMs. The two algorithms proposed are both variants of expectation maximization (EM) algorithm, using either Markov chain Monte Carlo or a Laplace approximation for the conditional expectation. Our methodology is general and applies to both discrete-domain (Gaussian Markov random field) as well as continuous-domain (Gaussian process) spatial models. Our methods are also able to adjust for spatial confounding issues that often lead to problems with interpreting regression coefficients. We show, via simulation and real data applications, that our methods perform well both in terms of parameter estimation as well as prediction. Crucially, our methodology is computationally efficient and scales well with the size of the data and is applicable to problems where maximum likelihood estimation was previously infeasible.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا