Do you want to publish a course? Click here

Two-fluid coexistence and phase separation in a one dimensional model with pair hopping and density interactions

83   0   0.0 ( 0 )
 Added by Guillaume Roux
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the phase diagram of a one-dimensional model of spinless fermions with pair-hopping and nearest-neighbor interaction, first introduced by Ruhman and Altman, using the density-matrix renormalization group combined with various analytical approaches. Although the main phases are a Luttinger liquid of fermions and a Luttinger liquid of pairs, we also find remarkable phases in which only a fraction of the fermions are paired. In such case, two situations arise: either fermions and pairs coexist spatially in a two-fluid mixture, or they are spatially segregated leading to phase separation. These results are supported by several analytical models that describe in an accurate way various relevant cuts of the phase diagram. Last, we identify relevant microscopic observables that capture the presence of these two fluids: while originally introduced in a phenomenological way, they support a wider application of two-fluid models for describing pairing phenomena.



rate research

Read More

The $t$-$J$ model is a standard model of strongly correlated electrons, often studied in the context of high-$T_c$ superconductivity. However, most studies of this model neglect three-site terms, which appear at the same order as the superexchange $J$. As these terms correspond to pair-hopping, they are expected to play an important role in the physics of superconductivity when doped sufficiently far from half-filling. In this paper we present a density matrix renormalisation group study of the one-dimensional $t$-$J$ model with the pair hopping terms included. We demonstrate that that these additional terms radically change the one-dimensional ground state phase diagram, extending the superconducting region at low fillings, while at larger fillings, superconductivity is completely suppressed. We explain this effect by introducing a simplified effective model of repulsive hardcore bosons.
We probe the superconducting gap in the zero temperature ground state of an attractively interacting spin-imbalanced two-dimensional Fermi gas with Diffusion Monte Carlo. A condensate fraction at nonzero pair momentum evidences a spatially non-uniform superconducting order parameter. Comparison with exact diagonalisation studies confirms that the nonzero condensate fraction across a range of nonzero fermion pair momenta is consistent with non-exclusive pairing between majority and minority fermions, an extension beyond FFLO theory.
145 - X. Deng , S. Ray , S. Sinha 2018
One-dimensional quasi-periodic systems with power-law hopping, $1/r^a$, differ from both the standard Aubry-Azbel-Harper (AAH) model and from power-law systems with uncorrelated disorder. Whereas in the AAH model all single-particle states undergo a transition from ergodic to localized at a critical quasi-disorder strength, short-range power-law hops with $a>1$ can result in mobility edges. Interestingly, there is no localization for long-range hops with $aleq 1$, in contrast to the case of uncorrelated disorder. Systems with long-range hops are rather characterized by ergodic-to-multifractal edges and a phase transition from ergodic to multifractal (extended but non ergodic) states. We show that both mobility and ergodic-to-multifractal edges may be clearly revealed in experiments on expansion dynamics.
We consider two species of hard-core bosons with density dependent hopping in a one-dimensional optical lattice, for which we propose experimental realizations using time-periodic driving. The quantum phase diagram for half-integer filling is determined by combining different advanced numerical simulations with analytic calculations. We find that a reduction of the density-dependent hopping induces a Mott-insulator to superfluid transition. For negative hopping a previously unknown state is found, where one species induces a gauge phase of the other species, which leads to a superfluid phase of gauge-paired particles. The corresponding experimental signatures are discussed.
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge, complicated by fundamental differences of the associated QPTs and their underlying conformal field theories. In this work, we take the first steps towards exploring the QKZM in two dimensions. We study the dynamical crossing of the QPT in the paradigmatic Ising model by a joint effort of modern state-of-the-art numerical methods. As a central result, we quantify universal QKZM behavior close to the QPT. However, upon traversing further into the ferromagnetic regime, we observe deviations from the QKZM prediction. We explain the observed behavior by proposing an {it extended QKZM} taking into account spectral information as well as phase ordering. Our work provides a starting point towards the exploration of dynamical universality in higher-dimensional quantum matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا