Do you want to publish a course? Click here

Deep Learning Based Reconstruction of Total Solar Irradiance

75   0   0.0 ( 0 )
 Added by Jason T. L. Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Earths primary source of energy is the radiant energy generated by the Sun, which is referred to as solar irradiance, or total solar irradiance (TSI) when all of the radiation is measured. A minor change in the solar irradiance can have a significant impact on the Earths climate and atmosphere. As a result, studying and measuring solar irradiance is crucial in understanding climate changes and solar variability. Several methods have been developed to reconstruct total solar irradiance for long and short periods of time; however, they are physics-based and rely on the availability of data, which does not go beyond 9,000 years. In this paper we propose a new method, called TSInet, to reconstruct total solar irradiance by deep learning for short and long periods of time that span beyond the physical models data availability. On the data that are available, our method agrees well with the state-of-the-art physics-based reconstruction models. To our knowledge, this is the first time that deep learning has been used to reconstruct total solar irradiance for more than 9,000 years.



rate research

Read More

Changes in solar irradiance and in its spectral distribution are among the main natural drivers of the climate on Earth. However, irradiance measurements are only available for less than four decades, while assessment of solar influence on Earth requires much longer records. The aim of this work is to provide the most up-to-date physics-based reconstruction of the solar total and spectral irradiance (TSI/SSI) over the last nine millennia. The concentrations of the cosmogenic isotopes 14C and 10Be in natural archives have been converted to decadally averaged sunspot numbers through a chain of physics-based models. TSI and SSI are reconstructed with an updated SATIRE model. Reconstructions are carried out for each isotope record separately, as well as for their composite. We present the first ever SSI reconstruction over the last 9000 years from the individual 14C and 10Be records as well as from their newest composite. The reconstruction employs physics-based models to describe the involved processes at each step of the procedure. Irradiance reconstructions based on two different cosmogenic isotope records, those of 14C and 10Be, agree well with each other in their long-term trends despite their different geochemical paths in the atmosphere of Earth. Over the last 9000 years, the reconstructed secular variability in TSI is of the order of 0.11%, or 1.5 W/m2. After the Maunder minimum, the reconstruction from the cosmogenic isotopes is consistent with that from the direct sunspot number observation. Furthermore, over the nineteenth century, the agreement of irradiance reconstructions using isotope records with the reconstruction from the sunspot number by Chatzistergos et al. (2017) is better than that with the reconstruction from the WDC-SILSO series (Clette et al. 2014), with a lower chi-square-value.
We analyze the long-term behavior of supergranule scale parameter, in active and quiet regions (AR, QR), using the Kodaikanal digitized data archive. This database provides century-long daily full disc observations of the Sun in Ca-II K wavelength. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.
The variation of total solar irradiance (TSI) has been measured since 1978 and that of the spectral irradiance for an even shorter amount of time. Semi-empirical models are now available that reproduce over 80% of the measured irradiance variations. An extension of these models into the more distant past is needed in order to serve as input to climate simulations. Here we review our most recent efforts to model solar total and spectral irradiance on time scales from days to centuries and even longer. Solar spectral irradiance has been reconstructed since 1947. Reconstruction of solar total irradiance goes back to 1610 and suggests a value of about 1-1.5 Wm$^{-2}$ for the increase in the cycle-averaged TSI since the end of the Maunder minimum, which is significantly lower than previously assumed but agrees with other modern models. First steps have also been made towards reconstructions of solar total and spectral irradiance on time scales of millennia.
Total solar irradiance (TSI) has been monitored from space since 1978. The measurements show a prominent variability in phase with the solar cycle, as well as fluctuations on timescales shorter than a few days. However, the measurements were done by multiple and usually relatively short-lived missions making the possible long-term trend in the TSI highly uncertain. While the variability in the UV irradiance is clearly in-phase with the solar cycle, the phase of the variability in the visible range has been debated. In this paper, we aim at getting an insight into the long-term trend of TSI since 1996 and the phase of the solar irradiance variations in the visible part of the spectrum. We use independent ground-based full-disc photometric observations in Ca~II~K and continuum from the Rome and San Fernando observatories to compute the TSI since 1996. We follow the empirical San Fernando approach based on the photometric sum index. We find a weak declining trend in the TSI of -7.8$^{+4.9}_{-0.8}times10^{-3}$ Wm$^{-2}$y$^{-1}$ between the 1996 and 2008 activity minima, while between 2008 and 2019 the reconstructed TSI shows no trend to a marginally decreasing (but statistically insignificant) trend of -0.1$^{+0.25}_{-0.02}times10^{-3}$ Wm$^{-2}$y$^{-1}$. The reference TSI series used for the reconstruction does not significantly affect the determined trend. The variation in the blue continuum (409.2 nm) is rather flat, while the variation in the red continuum (607.1 nm) is marginally in anti-phase, although this result is extremely sensitive to the accurate assessment of the quiet Sun level in the images. These results provide further insights into the long-term variation of the total solar irradiance. The amplitude of the variations in the visible is below the uncertainties of the processing, which prevents an assessment of the phase of the variations.
237 - J. C. Xu , D. F. Kong , F. Y. Li 2018
Solar photospheric magnetic field plays a dominant role in the variability of total solar irradiance (TSI). The modulation of magnetic flux at six specific ranges on TSI is characterized for the first time. The daily flux values of magnetic field at four ranges are extracted from MDI/{sl SOHO}, together with daily flux of active regions (MF$_{text{ar}}$) and quiet regions (MF$_{text{qr}}$); the first four ranges (MF$_{1-4}$) are: 1.5--2.9, 2.9--32.0, 32.0--42.7, and 42.7--380.1 ($times 10^{18}$ Mx per element), respectively. Cross-correlograms show that MF$_4$, MF$_{text{qr}}$, and MF$_{text{ar}}$ are positively correlated with TSI, while MF$_2$ is negatively correlated with TSI; the correlations between MF$_1$, MF$_3$ and TSI are insignificant. The bootstrapping tests confirm that the impact of MF$_4$ on TSI is more significant than that of MF$_{text{ar}}$ and MF$_{text{qr}}$, and MF$_{text{ar}}$ leads TSI by one rotational period. By extracting the rotational variations in the MFs and TSI, the modulations of the former on the latter at the solar rotational timescale are clearly illustrated and compared during solar maximum and minimum times, respectively. Comparison of the relative amplitudes of the long-term variation show that TSI is in good agreement with the variation of MF$_4$ and MF$_{text{ar}}$; besides, MF$_2$ is in antiphase with TSI, and it lags the latter by about 1.5 years.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا