No Arabic abstract
Spin-1 Bose gases quenched to spin degeneracy exhibit fragmentation: the appearance of a condensate in more than one single-particle state. Due to its highly entangled nature, this collective state is beyond the scope of a Gaussian variational approximation of the many-body wave function. Here, we improve the performance of the Gaussian variational Ansatz by considering dissipation into a fictitious environment, effectively suppressing entanglement within individual quantum trajectories at the expense of introducing a classical mixture of states. We find that this quantum trajectory approach captures the dynamical formation of a fragmented condensate, and analyze how much dissipation should be added to the experiment in order to keep a single realization in a non-fragmented state.
The dynamics of a many-body system can take many forms, from a purely reversible evolution to fast thermalization. Here we show experimentally and numerically that an assembly of spin 1 atoms all in the same spatial mode allows one to explore this wide variety of behaviors. When the system can be described by a Bogoliubov analysis, the relevant energy spectrum is linear and leads to undamped oscillations of many-body observables. Outside this regime, the non-linearity of the spectrum leads to irreversibity, characterized by a universal behavior. When the integrability of the Hamiltonian is broken, a chaotic dynamics emerges and leads to thermalization, in agreement with the Eigenstate Thermalization Hypothesis paradigm.
We consider an antiferromagnetic Bose-Einstein condensate in a traverse magnetic field with a fixed macroscopic magnetization. The system exhibits two different critical behaviors corresponding to transitions from polar to broken-axisymmetry and from antiferromagnetic to broken-axisymmetry phases depending on the value of magnetization. We exploit both types of system criticality as a resource in the precise estimation of control parameter value. We quantify the achievable precision by the quantum Fisher information. We demonstrate supersensitivity and show that the precision scales with the number of atoms up to $N^4$ around critically. In addition, we study the precision based on the error-propagation formula providing the simple-to-measure signal which coincides its scaling with the quantum Fisher information. Finally, we take into account the effect of non-zero temperature and show that the sub-shot noise sensitivity in the estimation of the control parameter is achievable in the low-temperature limit.
We study the dynamics of vortex dipoles in erbium ($^{168}$Er) and dysprosium ($^{164}$Dy) dipolar Bose-Einstein condensates (BECs) by applying an oscillating blue-detuned laser (Gaussian obstacle). For observing vortex dipoles, we solve a nonlocal Gross-Pitaevskii (GP) equation in quasi two-dimensions in real-time. We calculate the critical velocity for the nucleation of vortex dipoles in dipolar BECs with respect to dipolar interaction strengths. We also show the dynamics of the group of vortex dipoles and rarefaction pulses in dipolar BECs. In the dipolar BECs with Gaussian obstacle, we observe rarefaction pulses due to the interaction of dynamically migrating vortex dipoles.
The fragmentation of spin-orbit coupled spin-1 Bose gas with a weak interaction in external harmonic trap is explored by both exact diagonalization and mean-field theory. This fragmentation tendency, which originates from the total angular momentum conservation, is affected obviously by the spin-orbit coupling strength and the spin-dependent interaction. Strong spin-orbit interaction raises the inverse participation ratio, which describes the number of significantly occupied single-particle states. As the spin-dependent interaction changes from anti-ferromagnetic to ferromagnetic, the peak values in the inverse participation ratio become lower. Without the confinement of the appointed total angular momentum, the condensate chooses a zero or finite total angular momentum ground state, which is determined by both the interaction and the spin-orbit coupling strength.
One of the excitements generated by the cold atom systems is the possibility to realize, and explore, varied topological phases stemming from multi-component nature of the condensate. Popular examples are the antiferromagnetic (AFM) and the ferromagnetic (FM) phases in the three-component atomic condensate with effective spin-1, to which different topological manifolds can be assigned. It follows, from consideration of homotopy, that different sorts of topological defects will be stable in each manifold. For instance, Skyrmionic texture is believed to be a stable topological object in two-dimensional AFM spin-1 condensate. Countering such common perceptions, here we show on the basis of a new wave function decomposition scheme that there is no physical parameter regime wherein the temporal dynamics of spin-1 condensate can be described solely within AFM or FM manifold. Initial state of definite topological number prepared entirely within one particular phase must immediately evolve into a mixed state. Accordingly, the very notion of topology and topological stability within the sub-manifold of AFM or FM become invalid. Numerical simulation reveals the linear Zeeman effect to be an efficient catalyst to extract the alternate component from an initial topological object prepared entirely within one particular sub-manifold, serving as a potential new tool for topology engineering in multi-component Bose-Einstein condensates.