Do you want to publish a course? Click here

Neural Variational Gradient Descent

82   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Particle-based approximate Bayesian inference approaches such as Stein Variational Gradient Descent (SVGD) combine the flexibility and convergence guarantees of sampling methods with the computational benefits of variational inference. In practice, SVGD relies on the choice of an appropriate kernel function, which impacts its ability to model the target distribution -- a challenging problem with only heuristic solutions. We propose Neural Variational Gradient Descent (NVGD), which is based on parameterizing the witness function of the Stein discrepancy by a deep neural network whose parameters are learned in parallel to the inference, mitigating the necessity to make any kernel choices whatsoever. We empirically evaluate our method on popular synthetic inference problems, real-world Bayesian linear regression, and Bayesian neural network inference.

rate research

Read More

Particle based optimization algorithms have recently been developed as sampling methods that iteratively update a set of particles to approximate a target distribution. In particular Stein variational gradient descent has gained attention in the approximate inference literature for its flexibility and accuracy. We empirically explore the ability of this method to sample from multi-modal distributions and focus on two important issues: (i) the inability of the particles to escape from local modes and (ii) the inefficacy in reproducing the density of the different regions. We propose an annealing schedule to solve these issues and show, through various experiments, how this simple solution leads to significant improvements in mode coverage, without invalidating any theoretical properties of the original algorithm.
One of the mysteries in the success of neural networks is randomly initialized first order methods like gradient descent can achieve zero training loss even though the objective function is non-convex and non-smooth. This paper demystifies this surprising phenomenon for two-layer fully connected ReLU activated neural networks. For an $m$ hidden node shallow neural network with ReLU activation and $n$ training data, we show as long as $m$ is large enough and no two inputs are parallel, randomly initialized gradient descent converges to a globally optimal solution at a linear convergence rate for the quadratic loss function. Our analysis relies on the following observation: over-parameterization and random initialization jointly restrict every weight vector to be close to its initialization for all iterations, which allows us to exploit a strong convexity-like property to show that gradient descent converges at a global linear rate to the global optimum. We believe these insights are also useful in analyzing deep models and other first order methods.
Stein variational gradient descent (SVGD) and its variants have shown promising successes in approximate inference for complex distributions. However, their empirical performance depends crucially on the choice of optimal kernel. Unfortunately, RBF kernel with median heuristics is a common choice in previous approaches which has been proved sub-optimal. Inspired by the paradigm of multiple kernel learning, our solution to this issue is using a combination of multiple kernels to approximate the optimal kernel instead of a single one which may limit the performance and flexibility. To do so, we extend Kernelized Stein Discrepancy (KSD) to its multiple kernel view called Multiple Kernelized Stein Discrepancy (MKSD). Further, we leverage MKSD to construct a general algorithm based on SVGD, which be called Multiple Kernel SVGD (MK-SVGD). Besides, we automatically assign a weight to each kernel without any other parameters. The proposed method not only gets rid of optimal kernel dependence but also maintains computational effectiveness. Experiments on various tasks and models show the effectiveness of our method.
Representations are fundamental to artificial intelligence. The performance of a learning system depends on the type of representation used for representing the data. Typically, these representations are hand-engineered using domain knowledge. More recently, the trend is to learn these representations through stochastic gradient descent in multi-layer neural networks, which is called backprop. Learning the representations directly from the incoming data stream reduces the human labour involved in designing a learning system. More importantly, this allows in scaling of a learning system for difficult tasks. In this paper, we introduce a new incremental learning algorithm called crossprop, which learns incoming weights of hidden units based on the meta-gradient descent approach, that was previously introduced by Sutton (1992) and Schraudolph (1999) for learning step-sizes. The final update equation introduces an additional memory parameter for each of these weights and generalizes the backprop update equation. From our experiments, we show that crossprop learns and reuses its feature representation while tackling new and unseen tasks whereas backprop relearns a new feature representation.
239 - Jun Han , Qiang Liu 2018
Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for complex distributions. However, the standard SVGD requires calculating the gradient of the target density and cannot be applied when the gradient is unavailable. In this work, we develop a gradient-free variant of SVGD (GF-SVGD), which replaces the true gradient with a surrogate gradient, and corrects the induced bias by re-weighting the gradients in a proper form. We show that our GF-SVGD can be viewed as the standard SVGD with a special choice of kernel, and hence directly inherits the theoretical properties of SVGD. We shed insights on the empirical choice of the surrogate gradient and propose an annealed GF-SVGD that leverages the idea of simulated annealing to improve the performance on high dimensional complex distributions. Empirical studies show that our method consistently outperforms a number of recent advanced gradient-free MCMC methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا