No Arabic abstract
Sombor index is a novel topological index introduced by Gutman, defined as $SO(G)=sumlimits_{uvin E(G)}sqrt{d_{u}^{2}+d_{v}^{2}}$, where $d_{u}$ denotes the degree of vertex $u$. Recently, Chen et al. [H. Chen, W. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math. Comput. Chem. 87 (2022), in press] considered the Sombor indices of trees with given diameter. For the continue, we determine the maximum Sombor indices for unicyclic graphs with given diameter.
Gutman and Wagner proposed the concept of matching energy (ME) and pointed out that the chemical applications of ME go back to the 1970s. Let $G$ be a simple graph of order $n$ and $mu_1,mu_2,ldots,mu_n$ be the roots of its matching polynomial. The matching energy of $G$ is defined to be the sum of the absolute values of $mu_{i} (i=1,2,ldots,n)$. In this paper, we characterize the graphs with minimal matching energy among all unicyclic and bicyclic graphs with a given diameter $d$.
We perform a detailed computational study of the recently introduced Sombor indices on random graphs. Specifically, we apply Sombor indices on three models of random graphs: Erdos-Renyi graphs, random geometric graphs, and bipartite random graphs. Within a statistical random matrix theory approach, we show that the average values of Sombor indices, normalized to the order of the graph, scale with the graph average degree. Moreover, we discuss the application of average Sombor indices as complexity measures of random graphs and, as a consequence, we show that selected normalized Sombor indices are highly correlated with the Shannon entropy of the eigenvectors of the graph adjacency matrix.
Hexagonal chains are a special class of catacondensed benzenoid system and phenylene chains are a class of polycyclic aromatic compounds. Recently, A family of Sombor indices was introduced by Gutman in the chemical graph theory. It had been examined that these indices may be successfully applied on modeling thermodynamic properties of compounds. In this paper, we study the expected values of the Sombor indices in random hexagonal chains, phenylene chains, and consider the Sombor indices of some chemical graphs such as graphene, coronoid systems and carbon nanocones.
Topological indices are a class of numerical invariants that predict certain physical and chemical properties of molecules. Recently, two novel topological indices, named as Sombor index and reduced Sombor index, were introduced by Gutman, defined as $$SO(G)=sum_{uvin E(G)}sqrt{d_{G}^{2}(u)+d_{G}^{2}(v)},$$ $$SO_{red}(G)=sum_{uvin E(G)}sqrt{(d_{G}(u)-1)^{2}+(d_{G}(v)-1)^{2}},$$ where $d_{G}(u)$ denotes the degree of vertex $u$ in $G$. In this paper, our aim is to order the chemical trees, chemical unicyclic graphs, chemical bicyclic graphs and chemical tricyclic graphs with respect to Sombor index and reduced Sombor index. We determine the first fourteen minimum chemical trees, the first four minimum chemical unicyclic graphs, the first three minimum chemical bicyclic graphs, the first seven minimum chemical tricyclic graphs. At last, we consider the applications of reduced Sombor index to octane isomers.
Let $L$ be subset of ${3,4,dots}$ and let $X_{n,M}^{(L)}$ be the number of cycles belonging to unicyclic components whose length is in $L$ in the random graph $G(n,M)$. We find the limiting distribution of $X_{n,M}^{(L)}$ in the subcritical regime $M=cn$ with $c<1/2$ and the critical regime $M=frac{n}{2}left(1+mu n^{-1/3}right)$ with $mu=O(1)$. Depending on the regime and a condition involving the series $sum_{l in L} frac{z^l}{2l}$, we obtain in the limit either a Poisson or a normal distribution as $ntoinfty$.