The flow of viscoelastic fluids in porous media is encountered in many practical applications, such as in the enhanced oil recovery process or in the groundwater remediation. Once the flow rate exceeds a critical value in such flows, an elastic instability with fluctuating flow field is observed, which ultimately transits to a more chaotic and turbulence-like flow structure as the flow rate further increases. In a recent study, it has been experimentally shown that this chaotic flow behaviour of viscoelastic fluids can be suppressed by increasing the geometric disorder in a model porous media consisting of a microchannel with several micropillars placed in it. However, the present numerical study demonstrates that this is not always true. We show that it depends on the initial arrangement of the micropillars for mimicking the porous media. In particular, we find that for an initial ordered and aligned configuration of the micropillars, the introduction of geometric order actually increases the chaotic flow dynamics as opposed to that seen for an initial ordered and staggered configuration of the micropillars. We suggest that this chaotic flow behaviour actually depends on the number of the stagnation points revealed to the flow field where maximum stretching of the viscoelastic microstructure happens. Our findings and explanation are perfectly in line with that observed and provided in a more recent experimental study.