Do you want to publish a course? Click here

Incentive Compatible Mechanism for Influential Agent Selection

124   0   0.0 ( 0 )
 Added by Xiuzhen Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Selecting the most influential agent in a network has huge practical value in applications. However, in many scenarios, the graph structure can only be known from agents reports on their connections. In a self-interested setting, agents may strategically hide some connections to make themselves seem to be more important. In this paper, we study the incentive compatible (IC) selection mechanism to prevent such manipulations. Specifically, we model the progeny of an agent as her influence power, i.e., the number of nodes in the subgraph rooted at her. We then propose the Geometric Mechanism, which selects an agent with at least 1/2 of the optimal progeny in expectation under the properties of incentive compatibility and fairness. Fairness requires that two roots with the same contribution in two graphs are assigned the same probability. Furthermore, we prove an upper bound of 1/(1+ln 2) for any incentive compatible and fair selection mechanisms.



rate research

Read More

Individual decision-makers consume information revealed by the previous decision makers, and produce information that may help in future decisions. This phenomenon is common in a wide range of scenarios in the Internet economy, as well as in other domains such as medical decisions. Each decision-maker would individually prefer to exploit: select an action with the highest expected reward given her current information. At the same time, each decision-maker would prefer previous decision-makers to explore, producing information about the rewards of various actions. A social planner, by means of carefully designed information disclosure, can incentivize the agents to balance the exploration and exploitation so as to maximize social welfare. We formulate this problem as a multi-armed bandit problem (and various generalizations thereof) under incentive-compatibility constraints induced by the agents Bayesian priors. We design an incentive-compatible bandit algorithm for the social planner whose regret is asymptotically optimal among all bandit algorithms (incentive-compatible or not). Further, we provide a black-box reduction from an arbitrary multi-arm bandit algorithm to an incentive-compatible one, with only a constant multiplicative increase in regret. This reduction works for very general bandit setting that incorporate contexts and arbitrary auxiliary feedback.
Miners in a blockchain system are suffering from ever-increasing storage costs, which in general have not been properly compensated by the users transaction fees. This reduces the incentives for the miners participation and may jeopardize the blockchain security. We propose to mitigate this blockchain insufficient fee issue through a Fee and Waiting Tax (FWT) mechanism, which explicitly considers the two types of negative externalities in the system. Specifically, we model the interactions between the protocol designer, users, and miners as a three-stage Stackelberg game. By characterizing the equilibrium of the game, we find that miners neglecting the negative externality in transaction selection cause they are willing to accept insufficient-fee transactions. This leads to the insufficient storage fee issue in the existing protocol. Moreover, our proposed optimal FWT mechanism can motivate users to pay sufficient transaction fees to cover the storage costs and achieve the unconstrained social optimum. Numerical results show that the optimal FWT mechanism guarantees sufficient transaction fees and achieves an average social welfare improvement of 33.73% or more over the existing protocol. Furthermore, the optimal FWT mechanism achieves the maximum fairness index and performs well even under heterogeneous-storage-cost miners.
A distributed machine learning platform needs to recruit many heterogeneous worker nodes to finish computation simultaneously. As a result, the overall performance may be degraded due to straggling workers. By introducing redundancy into computation, coded machine learning can effectively improve the runtime performance by recovering the final computation result through the first $k$ (out of the total $n$) workers who finish computation. While existing studies focus on designing efficient coding schemes, the issue of designing proper incentives to encourage worker participation is still under-explored. This paper studies the platforms optimal incentive mechanism for motivating proper workers participation in coded machine learning, despite the incomplete information about heterogeneous workers computation performances and costs. A key contribution of this work is to summarize workers multi-dimensional heterogeneity as a one-dimensional metric, which guides the platforms efficient selection of workers under incomplete information with a linear computation complexity. Moreover, we prove that the optimal recovery threshold $k$ is linearly proportional to the participator number $n$ if we use the widely adopted MDS (Maximum Distance Separable) codes for data encoding. We also show that the platforms increased cost due to incomplete information disappears when worker number is sufficiently large, but it does not monotonically decrease in worker number.
99 - Avrim Blum , Paul Golz 2021
Motivated by kidney exchange, we study the following mechanism-design problem: On a directed graph (of transplant compatibilities among patient-donor pairs), the mechanism must select a simple path (a chain of transplantations) starting at a distinguished vertex (an altruistic donor) such that the total length of this path is as large as possible (a maximum number of patients receive a kidney). However, the mechanism does not have direct access to the graph. Instead, the vertices are partitioned over multiple players (hospitals), and each player reports a subset of her vertices to the mechanism. In particular, a player may strategically omit vertices to increase how many of her vertices lie on the path returned by the mechanism. Our objective is to find mechanisms that limit incentives for such manipulation while producing long paths. Unfortunately, in worst-case instances, competing with the overall longest path is impossible while incentivizing (approximate) truthfulness, i.e., requiring that hiding nodes cannot increase a players utility by more than a factor of $1 + o(1)$. We therefore adopt a semi-random model where a small ($o(n)$) number of random edges are added to worst-case instances. While it remains impossible for truthful mechanisms to compete with the overall longest path, we give a truthful mechanism that competes with a weaker but non-trivial benchmark: the length of any path whose subpaths within each player have a minimum average length. In fact, our mechanism satisfies even a stronger notion of truthfulness, which we call matching-time incentive compatibility. This notion of truthfulness requires that each player not only reports her nodes truthfully but also does not stop the returned path at any of her nodes in order to divert it to a continuation inside her own subgraph.
242 - Jiajun Sun 2013
In crowdsourcing markets, there are two different type jobs, i.e. homogeneous jobs and heterogeneous jobs, which need to be allocated to workers. Incentive mechanisms are essential to attract extensive user participating for achieving good service quality, especially under a given budget constraint condition. To this end, recently, Singer et al. propose a novel class of auction mechanisms for determining near-optimal prices of tasks for crowdsourcing markets constrained by the given budget. Their mechanisms are very useful to motivate extensive user to truthfully participate in crowdsourcing markets. Although they are so important, there still exist many security and privacy challenges in real-life environments. In this paper, we present a general privacy-preserving verifiable incentive mechanism for crowdsourcing markets with the budget constraint, not only to exploit how to protect the bids and assignments privacy, and the chosen winners privacy in crowdsourcing markets with homogeneous jobs and heterogeneous jobs and identity privacy from users, but also to make the verifiable payment between the platform and users for crowdsourcing applications. Results show that our general privacy-preserving verifiable incentive mechanisms achieve the same results as the generic one without privacy preservation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا