Do you want to publish a course? Click here

The well-posedness, ill-posedness and non-uniform dependence on initial data for the Fornberg-Whitham equation in Besov spaces

144   0   0.0 ( 0 )
 Added by Yingying Guo
 Publication date 2021
  fields
and research's language is English
 Authors Yingying Guo




Ask ChatGPT about the research

In this paper, we first establish the local well-posedness (existence, uniqueness and continuous dependence) for the Fornberg-Whitham equation in both supercritical Besov spaces $B^s_{p,r}, s>1+frac{1}{p}, 1leq p,rleq+infty$ and critical Besov spaces $B^{1+frac{1}{p}}_{p,1}, 1leq p<+infty$, which improves the previous work cite{y2,ho,ht}. Then, we prove the solution is not uniformly continuous dependence on the initial data in supercritical Besov spaces $B^s_{p,r}, s>1+frac{1}{p}, 1leq pleq+infty, 1leq r<+infty$ and critical Besov spaces $B^{1+frac{1}{p}}_{p,1}, 1leq p<+infty$. At last, we show that the solution is ill-posed in $B^{sigma}_{p,infty}$ with $sigma>3+frac{1}{p}, 1leq pleq+infty$.



rate research

Read More

181 - Xu Fei , Zhang Yong , Fengquan Li 2021
This work studies a two-component Fornberg-Whitham (FW) system, which can be considered as a model for the propagation of shallow water waves. Its known that its solutions depend continuously on their initial data from the local well-posedness result. In this paper, we further show that such dependence is not uniformly continuous in $H^{s}(R)times H^{s-1}(R)$ for $s>frac{3}{2}$, but H{o}ler continuous in a weaker topology. Besides, we also establish that the FW system is ill-posed in the critical Sobolev space $H^{frac{3}{2}}(R)times H^{frac{1}{2}}(R)$ by proving the norm inflation.
68 - Min Li , Yingying Guo 2021
In the paper, by constructing a initial data $u_{0}in B^{sigma}_{p,infty}$ with $sigma-2>max{1+frac 1 p, frac 3 2}$, we prove that the corresponding solution to the higher dimensional Camassa-Holm equations starting from $u_{0}$ is discontinuous at $t=0$ in the norm of $B^{sigma}_{p,infty}$, which implies that the ill-posedness for the higher dimensional Camassa-Holm equations in $B^{sigma}_{p,infty}$.
In this paper, we mainly investigate the Cauchy problem of the non-resistive MHD equation. We first establish the local existence in the homogeneous Besov space $dot{B}^{frac{d}{p}-1}_{p,1}times dot{B}^{frac{d}{p}}_{p,1}$ with $p<infty$, and give a lifespan $T$ of the solution which depends on the norm of the Littlewood-Paley decomposition of the initial data. Then, we prove that if the initial data $(u^n_0,b^n_0)rightarrow (u_0,b_0)$ in $dot{B}^{frac{d}{p}-1}_{p,1}times dot{B}^{frac{d}{p}}_{p,1}$, then the corresponding existence times $T_nrightarrow T$, which implies that they have a common lower bound of the lifespan. Finally, we prove that the data-to-solutions map depends continuously on the initial data when $pleq 2d$. Therefore the non-resistive MHD equation is local well-posedness in the homogeneous Besov space in the Hadamard sense. Our obtained result improves considerably the recent results in cite{Li1,chemin1,Feffer2}.
108 - Zhaoyang Qiu , Huaqiao Wang 2020
In this paper, we consider the almost sure well-posedness of the Cauchy problem to the Cahn-Hilliard-Navier-Stokes equation with a randomization initial data on a torus $mathbb{T}^3$. First, we prove the local existence and uniqueness of solution. Furthermore, we prove the global existence and uniqueness of solution and give the relative probability estimate under the condition of small initial data.
We are concerned with the Cauchy problem of the full compressible Navier-Stokes equations satisfied by viscous and heat conducting fluids in $mathbb{R}^n.$ We focus on the so-called critical Besov regularity framework. In this setting, it is natural to consider initial densities $rho_0,$ velocity fields $u_0$ and temperatures $theta_0$ with $a_0:=rho_0-1indot B^{frac np}_{p,1},$ $u_0indot B^{frac np-1}_{p,1}$ and $theta_0indot B^{frac np-2}_{p,1}.$ After recasting the whole system in Lagrangian coordinates, and working with the emph{total energy along the flow} rather than with the temperature, we discover that the system may be solved by means of Banach fixed point theorem in a critical functional framework whenever the space dimension is $ngeq2,$ and $1<p<2n.$ Back to Eulerian coordinates, this allows to improve the range of $p$s for which the system is locally well-posed, compared to Danchin, Comm. Partial Differential Equations 26 (2001).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا