No Arabic abstract
We propose and experimentally demonstrate an interference management system that removes wideband wireless interference by using photonic signal processing and free space optical communication. The receiver separates radio frequency interferences by upconverting the mixed signals to optical frequencies and processing the signals with the photonic circuits. Signals with GHz bandwidth are processed and separated in real-time. The reference signals for interference cancellation are transmitted in a free space optical communication link, which provides large bandwidth for multi-band operation and accelerates the mixed signal separation process by reducing the dimensions of the un-known mixing matrix. Experimental results show that the system achieves 30dB real-time cancellation depth with over 6GHz bandwidth. Multiple radio frequency bands can be processed at the same time with a single system. In addition, multiple radio frequency bands can be processed at the same time with a single system.
We design and experimentally demonstrate a radio frequency interference management system with free-space optical communication and photonic signal processing. The system provides real-time interference cancellation in 6 GHz wide bandwidth.
Free-space optical (FSO) communications has the potential to revolutionize wireless communications due to its advantages of inherent security, high-directionality, high available bandwidth and small physical footprint. The effects of atmospheric turbulence currently limit the performance of FSO communications. In this letter, we demonstrate a system capable of indiscriminately suppressing the atmospheric phase noise encountered by independent optical signals spread over a range of 7.2 THz (encompassing the full optical C-Band), by actively phase stabilizing a primary optical signal at 193.1 THz (1552 nm). We show ~30 dB of indiscriminate phase stabilization over the full range, down to average phase noise at 10 Hz of -39.6 dBc/Hz when using an acousto-optic modulator (AOM) as a Doppler actuator, and -39.9 dBc/Hz when using a fiber-stretcher as group-delay actuator to provide the phase-stabilization systems feedback. We demonstrate that this suppression is limited by the noise of the independent optical signals, and that the expected achievable suppression is more than 40 dB greater, reaching around -90 dB/Hz at 10 Hz. We conclude that 40 Tbps ground-to-space FSO transmission would be made possible with the combination of our stabilization system and other demonstrated technologies.
A photonics-based digital and analog self-interference cancellation approach for in-band full-duplex communication systems and frequency-modulated continuous-wave radar systems is reported. One dual-drive Mach-Zehnder modulator is used to implement the analog self-interference cancellation by pre-adjusting the delay and amplitude of the reference signal applied to the dual-drive Mach-Zehnder modulator in the digital domain. The amplitude is determined via the received signal power, while the delay is searched by the cross-correlation and bisection methods. Furthermore, recursive least squared or normalized least mean square algorithms are used to suppress the residual self-interference in the digital domain. Quadrature phase-shift keying modulated signals and linearly frequency-modulated signals are used to experimentally verify the proposed method. The analog cancellation depth is around 20 dB, and the total cancellation depth is more than 36 dB for the 2-Gbaud quadrature phase-shift keying modulated signals. For the linearly frequency-modulated signals, the analog and total cancellation depths are around 19 dB and 34 dB, respectively.
We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulse functions as a tweezer that collects samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short pulse sampling maintains the accuracy of the sampled signals, so the statistical properties of the undersampling signals are the same as the statistical properties of the original signals. With the optical pulses generated from a mode-locked laser, the optical pulse sampling system is able to process and separate mixed signals with bandwidth over 100GHz and achieves a dynamic range of 30dB.
Atmospheric turbulences can generate scintillation or beam wandering phenomena that impairs free space optical (FSO) communication. In this paper, we propose and demonstrate a proof-of-concept FSO communication receiver based on a spatial demultiplexer and a photonic integrated circuit coherent combiner. The system collects the light from several Hermite Gauss spatial modes and coherently combine on chip the energy from the different modes into a single output. The FSO receiver is characterized with a wavefront emulator bench that generates arbitrary phase and intensity patterns. The multimode receiver presents a strong resilience to wavefront distortions, compared to a monomode FSO receiver. The system is then used to detect a modulation of the optical beam through a random wavefront profile.