Do you want to publish a course? Click here

UV Fluorescence Traces Gas and LyA Evolution in Protoplanetary Disks

93   0   0.0 ( 0 )
 Added by Nicole Arulanantham
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultraviolet spectra of protoplanetary disks trace distributions of warm gas at radii where rocky planets form. We combine HST-COS observations of H2 and CO emission from 12 classical T Tauri stars to more extensively map inner disk surface layers, where gas temperature distributions allow radially stratified fluorescence from the two species. We calculate empirical emitting radii for each species under the assumption that the line widths are entirely set by Keplerian broadening, demonstrating that the CO fluorescence originates further from the stars (r ~ 20 AU) than the H2 (r ~ 0.8 AU). This is supported by 2-D radiative transfer models, which show that the peak and outer radii of the CO flux distributions generally extend further into the outer disk than the H2. These results also indicate that additional sources of LyA photons remain unaccounted for, requiring more complex models to fully reproduce the molecular gas emission. As a first step, we confirm that the morphologies of the UV-CO bands and LyA radiation fields are significantly correlated and discover that both trace the degree of dust disk evolution. The UV tracers appear to follow the same sequence of disk evolution as forbidden line emission from jets and winds, as the observed LyA profiles transition between dominant red wing and dominant blue wing shapes when the high-velocity optical emission disappears. Our results suggest a scenario where UV radiation fields, disk winds and jets, and molecular gas evolve in harmony with the dust disks throughout their lifetimes.



rate research

Read More

We investigate the simultaneous evolution of dust and gas density profiles at a radial pressure bump located in a protoplanetary disk. If dust particles are treated as test particles, a radial pressure bump traps dust particles that drift radially inward. As the dust particles become more concentrated at the gas pressure bump, however, the drag force from dust to gas (back-reaction), which is ignored in a test-particle approach, deforms the pressure bump. We find that the pressure bump is completely deformed by the back-reaction when the dust-to-gas mass ratio reaches $sim 1$ for a slower bump restoration. The direct gravitational instability of dust particles is inhibited by the bump destruction. In the dust-enriched region, the radial pressure support becomes $sim 10-100$ times lower than the global value set initially. Although the pressure bump is a favorable place for streaming instability (SI), the flattened pressure gradient inhibits SI from forming large particle clumps corresponding to $100-1000$ km sized bodies, which has been previously proposed. If SI occurs there, the dust clumps formed would be $10-100$ times smaller, that is, of about $1 - 100$ km.
Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In this work we investigate the gas and dust structure and dynamics for a typical T Tauri system under the influence of the vertical shear instability (VSI). We use global 3D radiation hydrodynamics simulations covering all $360^circ$ of azimuth with embedded particles of 0.1 and 1mm size, evolved for 400 orbits. Stellar irradiation heating is included with opacities for 0.1- to 10-$mu$m-sized dust. Saturated VSI turbulence produces a stress-to-pressure ratio of $alpha simeq 10^{-4}$. The value of $alpha$ is lowest within 30~au of the star, where thermal relaxation is slower relative to the orbital period and approaches the rate below which VSI is cut off. The rise in $alpha$ from 20 to 30~au causes a dip in the surface density near 35~au, leading to Rossby wave instability and the generation of a stationary, long-lived vortex spanning about 4~au in radius and 40~au in azimuth. Our results confirm previous findings that mm size grains are strongly vertically mixed by the VSI. The scale height aspect ratio for 1mm grains is determined to be 0.037, much higher than the value $H/r=0.007$ obtained from millimeter-wave observations of the HL~Tau system. The measured aspect ratio is better fit by non-ideal MHD models. In our VSI turbulence model, the mm grains drift radially inwards and many are trapped and concentrated inside the vortex. The turbulence induces a velocity dispersion of $sim 12$~m/s for the mm grains, indicating that grain-grain collisions could lead to fragmentation.
90 - J. J. Zanazzi , Dong Lai 2017
It is usually thought that viscous torque works to align a circumbinary disk with the binarys orbital plane. However, recent numerical simulations suggest that the disk may evolve to a configuration perpendicular to the binary orbit (polar alignment) if the binary is eccentric and the initial disk-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined disks around eccentric binaries, calculating the disk warp profile and dissipative torque acting on the disk. For disks with aspect ratio $H/r$ larger than the viscosity parameter $alpha$, bending wave propagation effectively makes the disk precess as a quasi-rigid body, while viscosity acts on the disk warp and twist to drive secular evolution of the disk-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disk orientation) for the disk to evolve toward polar alignment with the eccentric binary. When the disk has a non-negligible angular momentum compared to the binary, the final polar alignment inclination angle is reduced from $90^circ$. For typical protoplanetary disk parameters, the timescale of the inclination evolution is shorter than the disk lifetime, suggesting that highly-inclined disks and planets may exist orbiting eccentric binaries.
Dust evolution in protoplanetary disks from small dust grains to pebbles is key to the planet formation process. The gas in protoplanetary disks should influence the vertical distribution of small dust grains ($sim$1 $mu m$) in the disk.Utilizing archival near-infrared polarized light and millimeter observations, we can measure the scale height and the flare parameter $beta$ of the small dust grain scattering surface and $^{12}$CO gas emission surface for three protoplanetary disks IM Lup, HD 163296, and HD 97048 (CU Cha). For two systems, IM Lup and HD 163296, the $^{12}$CO gas and small dust grains at small radii from the star have similar heights but at larger radii ($>$100 au) the dust grain scattering surface height is lower than the $^{12}$CO gas emission surface height. In the case of HD 97048, the small dust grain scattering surface has similar heights to the $^{12}$CO gas emission surface at all radii. We ran a protoplanetary disk radiative transfer model of a generic protoplanetary disk with TORUS and showed that there is no difference between the observed scattering surface and $^{12}$CO emission surface. We also performed analytical modeling of the system and found that gas-to-dust ratios larger than 100 could explain the observed difference in IM Lup and HD 163296. This is the first direct comparison of observations of gas and small dust grain heights distribution in protoplanetary disks. Future observations of gas emission and near-infrared scattered light instruments are needed to look for similar trends in other protoplanetary disks.
The low water content of the terrestrial planets in the solar system suggests that the protoplanets formed within the water snow line. Accurate prediction of the snow line location moving with time provides a clue to constrain the formation process of the planets. In this paper, we investigate the migration of the snow line in protoplanetary disks whose accretion is controlled by laminar magnetic fields, which have been proposed by various nonideal magnetohydrodynamic (MHD) simulations. We propose an empirical model of the disk temperature based on our nonideal MHD simulations, which show that the accretion heating is significantly less efficient than in turbulent disks, and calculate the snow line location over time. We find that the snow line in the magnetically accreting laminar disks moves inside the current Earths orbit within 1 Myr after star formation, whereas the time for the conventional turbulent disk is much longer than 1 Myr. This result suggests that either the rocky protoplanets formed in such an early phase of the disk evolution, or the protoplanets moved outward to the current orbits after they formed close to the protosun.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا