Do you want to publish a course? Click here

Proca Q-balls and Q-shells

85   0   0.0 ( 0 )
 Added by Rebecca Riley
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this framework to include a Proca mass for the gauge boson, which can arise either from spontaneous symmetry breaking or via the Stuckelberg mechanism. A heavy (light) gauge boson leads to solitons reminiscent of the global (gauged) case, but for intermediate values these Proca solitons exhibit completely novel features such as disconnected regions of viable parameter space and Q-shells with unbounded radius. We provide numerical solutions and excellent analytic approximations for both Proca Q-balls and Q-shells. These allow us to not only demonstrate the novel features numerically, but also understand and predict their origin analytically.



rate research

Read More

Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the resulting set of nonlinear differential equations have markedly different properties, such as a maximal possible size and charge. Despite these differences, we discover a relation that allows one to extract the properties of gauged Q-balls (such as the radius, charge, and energy) from the more easily obtained properties of global Q-balls. These results provide a new guide to understanding gauged Q-balls as well as providing simple and accurate analytical characterization of the Q-ball properties.
We study non-topological solitons, so called Q-balls, which carry a non-vanishing Noether charge and arise as lump solutions of self-interacting complex scalar field models. Explicit examples of new axially symmetric non-spinning Q-ball solutions that have not been studied so far are constructed numerically. These solutions can be interpreted as angular excitations of the fundamental $Q$-balls and are related to the spherical harmonics. Correspondingly, they have higher energy and their energy densities possess two local maxima on the positive z-axis. We also study two Q-balls interacting via a potential term in (3+1) dimensions and construct examples of stationary, solitonic-like objects in (3+1)-dimensional flat space-time that consist of two interacting global scalar fields. We concentrate on configurations composed of one spinning and one non-spinning Q-ball and study the parameter-dependence of the energy and charges of the configuration. In addition, we present numerical evidence that for fixed values of the coupling constants two different types of 2-Q-ball solutions exist: solutions with defined parity, but also solutions which are asymmetric with respect to reflexion through the x-y-plane.
Non-topological gauged soliton solutions called Q-balls arise in many scalar field theories that are invariant under a U(1) gauge symmetry. The related, but qualitatively distinct, Q-shell solitons have only been shown to exist for special potentials. We investigate gauged solitons in a generic sixth-order polynomial potential (that contains the leading effects of many effective field theories) and show that this potential generically allows for both Q-balls and Q-shells. We argue that Q-shell solutions occur in many, and perhaps all, potentials that have previously only been shown to contain Q-balls. We give simple analytic characterizations of these Q-shell solutions, leading to excellent predictions of their physical properties.
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the $Q$-ball. Similar to the case of gauged $Q$-balls, Maxwell-Chern-Simons $Q$-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.
In this paper, we continue discussing Q-balls in the Wick--Cutkosky model. Despite Q-balls in this model are composed of two scalar fields, they turn out to be very useful and illustrative for examining various important properties of Q-balls. In particular, in the present paper we study in detail (analytically and numerically) the problem of classical stability of Q-balls, including the nonlinear evolution of classically unstable Q-balls, as well as the behaviour of Q-balls in external fields in the non-relativistic limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا