Spin- and charge- stripe order has been extensively studied in the superconducting cuprates, among which underdoped ${mathrm{La}}_{2-x}{mathrm{Sr}}_{x}{mathrm{CuO}}_{4}$ (LSCO) is an archetype which has static spin density wave (SDW) order at low temperatures. An intriguing, but not completely understood, phenomenon in LSCO is that the stripes are not perfectly aligned with the high-symmetry Cu-Cu directions, but are tilted. Using high-resolution neutron scattering, we find that the model material LSCO with $x=0.12$ has two coexisting phases at low temperatures, one with static spin stripes and one with fluctuating spin stripes, where both phases have the same tilt angle. For the static SDW, we accurately determined the spin direction as well as the interlayer correlations. Moreover, we performed numerical calculations using the doped Hubbard model to explain the origin of the tilting of the stripes. The tilting is quantitatively accounted for with a next-nearest neighbor hopping $t^{prime}$ that is anisotropic, consistent with the slight orthorhombicity of the sample. Our results highlight the success of the doped Hubbard model to describe specific details of the ground state of a real material, as well as the importance of $t^prime$ in the Hamiltonian. These results further reveal how the stripes and superconductivity are sensitively intertwined at the level of model calculations as well as in experimental observations.