Do you want to publish a course? Click here

Two Efficient and Easy-to-Use NLOS Mitigation Solutions to Indoor 3-D AOA-Based Localization

84   0   0.0 ( 0 )
 Added by Wenxin Xiong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper proposes two efficient and easy-to-use error mitigation solutions to the problem of three-dimensional (3-D) angle-of-arrival (AOA) source localization in the mixed line-of-sight (LOS) and non-line-of-sight (NLOS) indoor environments. A weighted linear least squares estimator is derived first for the LOS AOA components in terms of the direction vectors of arrival, albeit in a sub-optimal manner. Next, data selection exploiting the sum of squared residuals is carried out to discard the error-prone NLOS connections. In so doing, the first approach is constituted and more accurate closed-form location estimates can be obtained. The second method applies a simulated annealing stochastic framework to realize the robust $ell_1$-minimization criterion, which therefore falls into the methodology of statistical robustification. Computer simulations and ultrasonic onsite experiments are conducted to evaluate the performance of the two proposed methods, demonstrating their outstanding positioning results in the respective scenarios.



rate research

Read More

This paper revisits the problem of locating a signal-emitting source from time-difference-of-arrival (TDOA) measurements under non-line-of-sight (NLOS) propagation. Many currently fashionable methods for NLOS mitigation in TDOA-based localization tend to solve their optimization problems by means of convex relaxation and, thus, are computationally inefficient. Besides, previous studies show that manipulating directly on the TDOA metric usually gives rise to intricate estimators. Aiming at bypassing these challenges, we turn to retrieve the underlying time-of-arrival framework by treating the unknown source onset time as an optimization variable and imposing certain inequality constraints on it, mitigate the NLOS errors through the $ell_1$-norm robustification, and finally apply a hardware realizable neurodynamic model based on the redefined augmented Lagrangian and projection theorem to solve the resultant nonconvex optimization problem with inequality constraints. It is validated through extensive simulations that the proposed scheme can strike a nice balance between localization accuracy, computational complexity, and prior knowledge requirement.
The accuracy of smartphone-based positioning methods using WiFi usually suffers from ranging errors caused by non-line-of-sight (NLOS) conditions. Previous research usually exploits several statistical features from a long time series (hundreds of samples) of WiFi received signal strength (RSS) or WiFi round-trip time (RTT) to achieve a high identification accuracy. However, the long time series or large sample size attributes to high power and time consumption in data collection for both training and testing. This will also undoubtedly be detrimental to user experience as the waiting time of getting enough samples is quite long. Therefore, this paper proposes a new real-time NLOS/LOS identification method for smartphone-based indoor positioning system using WiFi RTT and RSS. Based on our extensive analysis of RSS and RTT features, a machine learning-based method using random forest was chosen and developed to separate the samples for NLOS/LOS conditions. Experiments in different environments show that our method achieves a discrimination accuracy of about 94% with a sample size of 10. Considering the theoretically shortest WiFi ranging interval of 100ms of the RTT-enabled smartphones, our algorithm is able to provide the shortest latency of 1s to get the testing result among all of the state-of-art methods.
Deep learning has achieved great success in a wide spectrum of multimedia applications such as image classification, natural language processing and multimodal data analysis. Recent years have seen the development of many deep learning frameworks that provide a high-level programming interface for users to design models, conduct training and deploy inference. However, it remains challenging to build an efficient end-to-end multimedia application with most existing frameworks. Specifically, in terms of usability, it is demanding for non-experts to implement deep learning models, obtain the right settings for the entire machine learning pipeline, manage models and datasets, and exploit external data sources all together. Further, in terms of adaptability, elastic computation solutions are much needed as the actual serving workload fluctuates constantly, and scaling the hardware resources to handle the fluctuating workload is typically infeasible. To address these challenges, we introduce SINGA-Easy, a new deep learning framework that provides distributed hyper-parameter tuning at the training stage, dynamic computational cost control at the inference stage, and intuitive user interactions with multimedia contents facilitated by model explanation. Our experiments on the training and deployment of multi-modality data analysis applications show that the framework is both usable and adaptable to dynamic inference loads. We implement SINGA-Easy on top of Apache SINGA and demonstrate our system with the entire machine learning life cycle.
As an emerging technique for confidential computing, trusted execution environment (TEE) receives a lot of attention. To better develop, deploy, and run secure applications on a TEE platform such as Intels SGX, both academic and industrial teams have devoted much effort to developing reliable and convenient TEE containers. In this paper, we studied the isolation strategies of 15 existing TEE containers to protect secure applications from potentially malicious operating systems (OS) or untrusted applications, using a semi-automatic approach combining a feedback-guided analyzer with manual code review. Our analysis reveals the isolation protection each of these TEE containers enforces, and their security weaknesses. We observe that none of the existing TEE containers can fulfill the goal they set, due to various pitfalls in their design and implementation. We report the lessons learnt from our study for guiding the development of more secure containers, and further discuss the trend of TEE container designs. We also release our analyzer that helps evaluate the container middleware both from the enclave and from the kernel.
When the direct view between the target and the observer is not available, due to obstacles with non-zero sizes, the observation is received after reflection from a reflector, this is the indirect view or Non-Line-Of Sight condition. Localization of a target in NLOS condition still one of the open problems yet. In this paper, we address this problem by localizing the reflector and the target simultaneously using a single stationary receiver, and a determined number of beacons, in which their placements are also analyzed in an unknown map. The work is done in mirror space, when the receiver is a camera, and the reflector is a planar mirror. Furthermore, the distance from the observer to the target is estimated by size constancy concept, and the angle of coming signal is the same as the orientation of the camera, with respect to a global frame. The results show the validation of the proposed work and the simulation results are matched with the theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا