Do you want to publish a course? Click here

Nonmagnetic $J = 0$ State and Spin-Orbit Excitations in K$_{2}$RuCl$_{6}$

82   0   0.0 ( 0 )
 Added by Hiroto Takahashi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin-orbit Mott insulators composed of $t_{2g}^4$ transition metal ions may host excitonic magnetism due to the condensation of spin-orbital $J=1$ triplons. Prior experiments suggest that the $4d$ antiferromagnet Ca$_{2}$RuO$_{4}$ embodies this notion, but a $J = 0$ nonmagnetic state as a basis of the excitonic picture remains to be confirmed. We use Ru $L_3$-edge resonant inelastic x-ray scattering to reveal archetypal $J$ multiplets with a $J=0$ ground state in the cubic compound K$_{2}$RuCl$_{6}$, which are well described within the $LS$-coupling scheme. This result highlights the critical role of unquenched orbital moments in $4d$-electron compounds and calls for investigations of quantum criticality and excitonic magnetism on various crystal lattices.



rate research

Read More

Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4$d$ system $alpha$-RuCl$_3$ has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru $d$ states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that $alpha$-RuCl$_3$ is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Discovering new spin-orbit entangled ground states and emergent phases of matter requires both experimentally probing the relevant energy scales and applying suitable theoretical models. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca$_3$LiOsO$_6$ and Ba$_2$YOsO$_6$. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal the ground state of $5d^3$ based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.
Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg_2. The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously-observed specific heat anomaly at sim0.5 K. The low-temperature muon relaxation is quantitatively consistent with nuclear magnetism including hyperfine enhancement of the ^{141}Pr nuclear moment. This is strong evidence against a Pr^{3+} electronic magnetic moment, and for the Gamma_3 crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr^{3+} ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg_2.
Trivalent americium has a non-magnetic ($J$ = 0) ground state arising from the cancelation of the orbital and spin moments. However, magnetism can be induced by a large molecular field if Am$^{3+}$ is embedded in a ferromagnetic matrix. Using the technique of x-ray magnetic circular dichroism, we show that this is the case in AmFe$_2$. Since $langle J_z rangle$ = 0, the spin component is exactly twice as large as the orbital one, the total Am moment is opposite to that of Fe, and the magnetic dipole operator $langle T_{z} rangle$ can be determined directly; we discuss the progression of the latter across the actinide series.
76 - S. Reschke , F. Mayr , Zhe Wang 2017
We report on THz, infrared reflectivity and transmission experiments for wave numbers from 10 to 8000 cm$^{-1}$ ($sim$ 1 meV - 1 eV) and for temperatures from 5 to 295 K on the Kitaev candidate material {alpha}-RuCl$_3$. As reported earlier, the compound under investigation passes through a first-order structural phase transition, from a monoclinic high-temperature to a rhombohedral low-temperature phase. The phase transition shows an extreme and unusual hysteretic behavior, which extends from 60 to 166 K. In passing this phase transition, in the complete frequency range investigated we found a significant reflectance change, which amounts almost a factor of two. We provide a broadband spectrum of dielectric constant, dielectric loss and optical conductivity from the THz to the mid infrared regime and study in detail the phonon response and the low-lying electronic density of states. We provide evidence for the onset of an optical energy gap, which is of order 200 meV, in good agreement with the gap derived from measurements of the DC electrical resistivity. Remarkably, the onset of the gap exhibits a strong blue shift on increasing temperatures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا