No Arabic abstract
We consider the Schr{o}dinger equation with a nondispersive logarithmic nonlinearity and a repulsive harmonic potential. For a suitable range of the coefficients, there exist two positive stationary solutions, each one generating a continuous family of solitary waves. These solutions are Gaussian, and turn out to be orbitally unstable. We also discuss the notion of ground state in this setting: for any natural definition, the set of ground states is empty.
We study the instability of standing-wave solutions $e^{iomega t}phi_{omega}(x)$ to the inhomogeneous nonlinear Schr{o}dinger equation $$iphi_t=-trianglephi+|x|^2phi-|x|^b|phi|^{p-1}phi, qquad inmathbb{R}^N, $$ where $ b > 0 $ and $ phi_{omega} $ is a ground-state solution. The results of the instability of standing-wave solutions reveal a balance between the frequency $omega $ of wave and the power of nonlinearity $p $ for any fixed $ b > 0. $
In this paper, we consider the following three dimensional defocusing cubic nonlinear Schrodinger equation (NLS) with partial harmonic potential begin{equation*}tag{NLS} ipartial_t u + left(Delta_{mathbb{R}^3 }-x^2 right) u = |u|^2 u, quad u|_{t=0} = u_0. end{equation*} Our main result shows that the solution $u$ scatters for any given initial data $u_0$ with finite mass and energy. The main new ingredient in our approach is to approximate (NLS) in the large-scale case by a relevant dispersive continuous resonant (DCR) system. The proof of global well-posedness and scattering of the new (DCR) system is greatly inspired by the fundamental works of Dodson cite{D3,D1,D2} in his study of scattering for the mass-critical nonlinear Schrodinger equation. The analysis of (DCR) system allows us to utilize the additional regularity of the smooth nonlinear profile so that the celebrated concentration-compactness/rigidity argument of Kenig and Merle applies.
We are concerned with the global behavior of the solutions of the focusing mass supercritical nonlinear Schr{o}dinger equation under partial harmonic confinement. We establish a necessary and sufficient condition on the initial data below the ground states to determine the global behavior (blow-up/scattering) of the solution. Our proof of scattering is based on the varia-tional characterization of the ground states, localized virial estimates, linear profile decomposition and nonlinear profiles.
This paper intents to present the state of art and recent developments of the optimal transportation theory with many marginals for a class of repulsive cost functions. We introduce some aspects of the Density Functional Theory (DFT) from a mathematical point of view, and revisit the theory of optimal transport from its perspective. Moreover, in the last three sections, we describe some recent and new theoretical and numerical results obtained for the Coulomb cost, the repulsive harmonic cost and the determinant cost.
It is shown that if the C operator for a PT-symmetric Hamiltonian with simple eigenvalues is not unique, then it is unbounded. Apart from the special cases of finite-matrix Hamiltonians and Hamiltonians generated by differential expressions with PT-symmetric point interactions, the usual situation is that the C operator is unbounded. The fact that the C operator is unbounded is significant because, while there is a formal equivalence between a PT-symmetric Hamiltonian and a conventionally Hermitian Hamiltonian in the sense that the two Hamiltonians are isospectral, the Hilbert spaces are inequivalent. This is so because the mapping from one Hilbert space to the other is unbounded. This shows that PT-symmetric quantum theories are mathematically distinct from conventional Hermitian quantum theories.