Do you want to publish a course? Click here

From nucleation to percolation: the effect of system size and system disorder

351   0   0.0 ( 0 )
 Added by Subhadeep Roy
 Publication date 2021
  fields Physics
and research's language is English
 Authors Subhadeep Roy




Ask ChatGPT about the research

A phase diagram for a one dimensional fiber bundle model is constructed with a continuous variation in two parameters guiding dynamics of the model: strength of disorder and system size. We monitor the successive events of fiber rupture in order to understand the spatial correlation associated with it. We observe three distinct regions with increasing disorder strength. (I) Nucleation - a crack propagates from a particular nucleus with very high spatial correlation and causes global failure; (II) Avalanche - the rupture events show precursors activities with a number of bursts. (III) Percolation - the rupture events are spatially uncorrelated like a percolation process. As the size of the bundle is increased, it favors the nucleating failure. In the thermodynamic limit, we only observe a nucleating failure unless the disorder strength is infinitely high.



rate research

Read More

357 - Subhadeep Roy 2021
The spatial correlation during a failure event of a one-dimensional fiber bundle model is studied when three main parameters guiding the dynamics of the model is tuned: the fluctuation of local strength ($beta$), range of stress relaxation ($gamma$), and size of the bundle ($L$). Both increasing disorder strength and stress release range favor rupture events, random in space like percolation. An increase in system size on the other hand nucleating failure. At an intermediate disorder strength and stress release range, when these two parameters compete, the failure process shows avalanches and precursor activities. A complex phase diagram on the $beta-gamma-L$ plane is presented showing different failure modes - nucleation, avalanche, and percolation, depending on the spatial correlation observed during the failure process.
In this work we bring out the existence of a novel kind of synchronization associated to the size of a complex system. A dichotomic random jump process associated to the dynamics of an externally driven stochastic system with $N$ coupled units is constructed. We define an output frequency and phase diffusion coefficient. System size synchronization occurs when the average output frequency is locked to the external one and the average phase diffusion coefficient shows a very deep minimum for a range of system sizes. Analytical and numerical procedures are introduced to study the phenomenon, and the results describe successfully the existence of system size synchronization.
Few analytical methods exist for quantitative studies of large fluctuations in stochastic systems. In this article, we develop a simple diagrammatic approach to the Chemical Master Equation that allows us to calculate multi-time correlation functions which are accurate to a any desired order in van Kampens system size expansion. Specifically, we present a set of Feynman rules from which this diagrammatic perturbation expansion can be constructed algorithmically. We then apply the methodology to derive in closed form the leading order corrections to the linear noise approximation of the intrinsic noise power spectrum for general biochemical reaction networks. Finally, we illustrate our results by describing noise-induced oscillations in the Brusselator reaction scheme which are not captured by the common linear noise approximation.
A metastable lattice gas with nearest-neighbor interactions and continuous-time dynamics is studied using a generalized Becker-Doring approach in the multidimensional space of cluster configurations. The pre-exponential of the metastable state lifetime (inverse of nucleation rate) is found to exhibit distinct peaks at integer values of the inverse supersaturation. Peaks are unobservable (infinitely narrow) in the strict limit T->0, but become detectable and eventually dominate at higher temperatures.
We observed asymmetric critical slowing down and asymmetric dynamical scaling exponent in the superheating and supercooling kinetic processes during the thermally-induced metal-insulator transition of MnNiSn based heusler alloy. During the transition to the insulator phase, the critical-like features get enhanced compared to the transition back to the metal phase. These experimental findings suggest that the metastable phase in the cooling branch of hysteresis has approached close to the spinodal instability. On the other hand, the extended disorder, generated over and above the intrinsic crystal defects during heating, triggers the excess heterogeneous nucleation before reaching the spinodal point. Zero temperature random field Ising model (ZTRFIM) simulation, inscribed for the athermal martensitic transitions, support the argument that the disorder smears the spinodal instabilities as the correlation length is bounded by the average distance between the disorder points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا