Do you want to publish a course? Click here

Audit, Dont Explain -- Recommendations Based on a Socio-Technical Understanding of ML-Based Systems

176   0   0.0 ( 0 )
 Added by Hendrik Heuer
 Publication date 2021
and research's language is English
 Authors Hendrik Heuer




Ask ChatGPT about the research

In this position paper, I provide a socio-technical perspective on machine learning-based systems. I also explain why systematic audits may be preferable to explainable AI systems. I make concrete recommendations for how institutions governed by public law akin to the German TUV and Stiftung Warentest can ensure that ML systems operate in the interest of the public.



rate research

Read More

150 - Hendrik Heuer 2021
At the latest since the advent of the Internet, disinformation and conspiracy theories have become ubiquitous. Recent examples like QAnon and Pizzagate prove that false information can lead to real violence. In this motivation statement for the Workshop on Human Aspects of Misinformation at CHI 2021, I explain my research agenda focused on 1. why people believe in disinformation, 2. how people can be best supported in recognizing disinformation, and 3. what the potentials and risks of different tools designed to fight disinformation are.
Driving and music listening are two inseparable everyday activities for millions of people today in the world. Considering the high correlation between music, mood and driving comfort and safety, it makes sense to use appropriate and intelligent music recommendations based on the mood of drivers and songs in the context of car driving. The objective of this paper is to present the project of a contextual mood-based music recommender system capable of regulating the drivers mood and trying to have a positive influence on her driving behaviour. Here we present the proof of concept of the system and describe the techniques and technologies that are part of it. Further possible future improvements on each of the building blocks are also presented.
User reviews have become an important source for recommending and explaining products or services. Particularly, providing explanations based on user reviews may improve users perception of a recommender system (RS). However, little is known about how review-based explanations can be effectively and efficiently presented to users of RS. We investigate the potential of interactive explanations in review-based RS in the domain of hotels, and propose an explanation scheme inspired by dialog models and formal argument structures. Additionally, we also address the combined effect of interactivity and different presentation styles (i.e. using only text, a bar chart or a table), as well as the influence that different user characteristics might have on users perception of the system and its explanations. To such effect, we implemented a review-based RS using a matrix factorization explanatory method, and conducted a user study. Our results show that providing more interactive explanations in review-based RS has a significant positive influence on the perception of explanation quality, effectiveness and trust in the system by users, and that user characteristics such as rational decision-making style and social awareness also have a significant influence on this perception.
User beliefs about algorithmic systems are constantly co-produced through user interaction and the complex socio-technical systems that generate recommendations. Identifying these beliefs is crucial because they influence how users interact with recommendation algorithms. With no prior work on user beliefs of algorithmic video recommendations, practitioners lack relevant knowledge to improve the user experience of such systems. To address this problem, we conducted semi-structured interviews with middle-aged YouTube video consumers to analyze their user beliefs about the video recommendation system. Our analysis revealed different factors that users believe influence their recommendations. Based on these factors, we identified four groups of user beliefs: Previous Actions, Social Media, Recommender System, and Company Policy. Additionally, we propose a framework to distinguish the four main actors that users believe influence their video recommendations: the current user, other users, the algorithm, and the organization. This framework provides a new lens to explore design suggestions based on the agency of these four actors. It also exposes a novel aspect previously unexplored: the effect of corporate decisions on the interaction with algorithmic recommendations. While we found that users are aware of the existence of the recommendation system on YouTube, we show that their understanding of this system is limited.
Culture is core to human civilization, and is essential for human intellectual achievements in social context. Culture also influences how humans work together, perform particular task and overall lifestyle and dealing with other groups of civilization. Thus, culture is concerned with establishing shared ideas, particularly those playing a key role in success. Does it impact on how two individuals can work together in achieving certain goals? In this paper, we establish a means to derive cultural association and map it to culturally mediated success. Human interactions with the environment are typically in the form of expressions. Association between culture and behavior produce similar beliefs which lead to common principles and actions, while cultural similarity as a set of common expressions and responses. To measure cultural association among different candidates, we propose the use of a Graphical Association Method (GAM). The behaviors of candidates are captured through series of expressions and represented in the graphical form. The association among corresponding node and core nodes is used for the same. Our approach provides a number of interesting results and promising avenues for future applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا