Do you want to publish a course? Click here

TumorCP: A Simple but Effective Object-Level Data Augmentation for Tumor Segmentation

348   0   0.0 ( 0 )
 Added by Yao Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep learning models are notoriously data-hungry. Thus, there is an urging need for data-efficient techniques in medical image analysis, where well-annotated data are costly and time consuming to collect. Motivated by the recently revived Copy-Paste augmentation, we propose TumorCP, a simple but effective object-level data augmentation method tailored for tumor segmentation. TumorCP is online and stochastic, providing unlimited augmentation possibilities for tumors subjects, locations, appearances, as well as morphologies. Experiments on kidney tumor segmentation task demonstrate that TumorCP surpasses the strong baseline by a remarkable margin of 7.12% on tumor Dice. Moreover, together with image-level data augmentation, it beats the current state-of-the-art by 2.32% on tumor Dice. Comprehensive ablation studies are performed to validate the effectiveness of TumorCP. Meanwhile, we show that TumorCP can lead to striking improvements in extremely low-data regimes. Evaluated with only 10% labeled data, TumorCP significantly boosts tumor Dice by 21.87%. To the best of our knowledge, this is the very first work exploring and extending the Copy-Paste design in medical imaging domain. Code is available at: https://github.com/YaoZhang93/TumorCP.



rate research

Read More

Semantic image segmentation aims to obtain object labels with precise boundaries, which usually suffers from overfitting. Recently, various data augmentation strategies like regional dropout and mix strategies have been proposed to address the problem. These strategies have proved to be effective for guiding the model to attend on less discriminative parts. However, current strategies operate at the image level, and objects and the background are coupled. Thus, the boundaries are not well augmented due to the fixed semantic scenario. In this paper, we propose ObjectAug to perform object-level augmentation for semantic image segmentation. ObjectAug first decouples the image into individual objects and the background using the semantic labels. Next, each object is augmented individually with commonly used augmentation methods (e.g., scaling, shifting, and rotation). Then, the black area brought by object augmentation is further restored using image inpainting. Finally, the augmented objects and background are assembled as an augmented image. In this way, the boundaries can be fully explored in the various semantic scenarios. In addition, ObjectAug can support category-aware augmentation that gives various possibilities to objects in each category, and can be easily combined with existing image-level augmentation methods to further boost performance. Comprehensive experiments are conducted on both natural image and medical image datasets. Experiment results demonstrate that our ObjectAug can evidently improve segmentation performance.
Building instance segmentation models that are data-efficient and can handle rare object categories is an important challenge in computer vision. Leveraging data augmentations is a promising direction towards addressing this challenge. Here, we perform a systematic study of the Copy-Paste augmentation ([13, 12]) for instance segmentation where we randomly paste objects onto an image. Prior studies on Copy-Paste relied on modeling the surrounding visual context for pasting the objects. However, we find that the simple mechanism of pasting objects randomly is good enough and can provide solid gains on top of strong baselines. Furthermore, we show Copy-Paste is additive with semi-supervised methods that leverage extra data through pseudo labeling (e.g. self-training). On COCO instance segmentation, we achieve 49.1 mask AP and 57.3 box AP, an improvement of +0.6 mask AP and +1.5 box AP over the previous state-of-the-art. We further demonstrate that Copy-Paste can lead to significant improvements on the LVIS benchmark. Our baseline model outperforms the LVIS 2020 Challenge winning entry by +3.6 mask AP on rare categories.
Recently, significant progress has been made on semantic segmentation. However, the success of supervised semantic segmentation typically relies on a large amount of labelled data, which is time-consuming and costly to obtain. Inspired by the success of semi-supervised learning methods in image classification, here we propose a simple yet effective semi-supervised learning framework for semantic segmentation. We demonstrate that the devil is in the details: a set of simple design and training techniques can collectively improve the performance of semi-supervised semantic segmentation significantly. Previous works [3, 27] fail to employ strong augmentation in pseudo label learning efficiently, as the large distribution change caused by strong augmentation harms the batch normalisation statistics. We design a new batch normalisation, namely distribution-specific batch normalisation (DSBN) to address this problem and demonstrate the importance of strong augmentation for semantic segmentation. Moreover, we design a self correction loss which is effective in noise resistance. We conduct a series of ablation studies to show the effectiveness of each component. Our method achieves state-of-the-art results in the semi-supervised settings on the Cityscapes and Pascal VOC datasets.
Imbalanced datasets widely exist in practice and area great challenge for training deep neural models with agood generalization on infrequent classes. In this work, wepropose a new rare-class sample generator (RSG) to solvethis problem. RSG aims to generate some new samplesfor rare classes during training, and it has in particularthe following advantages: (1) it is convenient to use andhighly versatile, because it can be easily integrated intoany kind of convolutional neural network, and it works wellwhen combined with different loss functions, and (2) it isonly used during the training phase, and therefore, no ad-ditional burden is imposed on deep neural networks duringthe testing phase. In extensive experimental evaluations, weverify the effectiveness of RSG. Furthermore, by leveragingRSG, we obtain competitive results on Imbalanced CIFARand new state-of-the-art results on Places-LT, ImageNet-LT, and iNaturalist 2018. The source code is available at https://github.com/Jianf-Wang/RSG.
160 - Xinru Zhang , Chenghao Liu , Ni Ou 2021
Brain lesion segmentation provides a valuable tool for clinical diagnosis, and convolutional neural networks (CNNs) have achieved unprecedented success in the task. Data augmentation is a widely used strategy that improves the training of CNNs, and the design of the augmentation method for brain lesion segmentation is still an open problem. In this work, we propose a simple data augmentation approach, dubbed as CarveMix, for CNN-based brain lesion segmentation. Like other mix-based methods, such as Mixup and CutMix, CarveMix stochastically combines two existing labeled images to generate new labeled samples. Yet, unlike these augmentation strategies based on image combination, CarveMix is lesion-aware, where the combination is performed with an attention on the lesions and a proper annotation is created for the generated image. Specifically, from one labeled image we carve a region of interest (ROI) according to the lesion location and geometry, and the size of the ROI is sampled from a probability distribution. The carved ROI then replaces the corresponding voxels in a second labeled image, and the annotation of the second image is replaced accordingly as well. In this way, we generate new labeled images for network training and the lesion information is preserved. To evaluate the proposed method, experiments were performed on two brain lesion datasets. The results show that our method improves the segmentation accuracy compared with other simple data augmentation approaches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا