Binary black hole spins are among the key observables for gravitational wave astronomy. Among the spin parameters, their orientations within the orbital plane, $phi_1$, $phi_2$ and $Delta phi=phi_1-phi_2$, are critical for understanding the prevalence of the spin-orbit resonances and merger recoils in binary black holes. Unfortunately, these angles are particularly hard to measure using current detectors, LIGO and Virgo. Because the spin directions are not constant for precessing binaries, the traditional approach is to measure the spin components at some reference stage in the waveform evolution, typically the point at which the frequency of the detected signal reaches 20 Hz. However, we find that this is a poor choice for the orbital-plane spin angle measurements. Instead, we propose measuring the spins at a fixed emph{dimensionless} time or frequency near the merger. This leads to significantly improved measurements for $phi_1$ and $phi_2$ for several gravitational wave events. Furthermore, using numerical relativity injections, we demonstrate that $Delta phi$ will also be better measured near the merger for louder signals expected in the future. Finally, we show that numerical relativity surrogate models are key for reliably measuring the orbital-plane spin orientations, even at moderate signal-to-noise ratios like $sim 30-45$.