Do you want to publish a course? Click here

Hubble-induced phase transitions on the lattice with applications to Ricci reheating

57   0   0.0 ( 0 )
 Added by Dario Bettoni
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using 3+1 classical lattice simulations, we follow the symmetry breaking pattern and subsequent non-linear evolution of a spectator field non-minimally coupled to gravity when the post-inflationary dynamics is given in terms of a stiff equation-of-state parameter. We find that the gradient energy density immediately after the transition represents a non-negligible fraction of the total energy budget, steadily growing to equal the kinetic counterpart. This behaviour is reflected on the evolution of the associated equation-of-state parameter, which approaches a universal value $1/3$, independently of the shape of non-linear interactions. Combined with kination, this observation allows for the generic onset of radiation domination for arbitrary self-interacting potentials, significantly extending previous results in the literature. The produced spectrum at that time is, however, non-thermal, precluding the naive extraction of thermodynamical quantities like temperature. Potential identifications of the spectator field with the Standard Model Higgs are also discussed.



rate research

Read More

We study the role of the Standard Model Higgs condensate, formed during cosmological inflation, in the epoch of reheating that follows. We focus on the scenario where the inflaton decays slowly and perturbatively, so that there is a long period between the end of inflation and the beginning of radiation domination. The Higgs condensate decays non-perturbatively during this period, and we show that it heats the primordial plasma to much higher temperatures than would result from the slowly-decaying inflaton alone. We discuss the effect of this hot plasma on the thermalization of the inflatons decay products, and study its phenomenological implications for the formation of cosmological relics like dark matter, with associated isocurvature fluctuations, and the restoration of the electroweak and Peccei-Quinn symmetries.
55 - Minxi He 2020
The preheating process in the mixed Higgs-$ R^2 $ model has been investigated in depth recently, but the analysis of perturbative reheating is still missing. In this paper, we discuss the effect of perturbative decay during (p)reheating in this model. It is shown that perturbative decay can play an important role throughout the whole reheating process. Depending on the model parameters, perturbative decay can affect different stages of the reheating. We study the perturbative reheating with and without the presence of early preheating stage, and calculate the reheating temperature and the duration of the whole perturbative process. We find that the detail of the early preheating stage may not affect the final reheating temperature while it can affect the number of e-folds of reheating.
Within a recently proposed classically conformal model, in which the generation of neutrino masses is linked to spontaneous scale symmetry breaking, we investigate the associated phase transition and find it to be of strong first order with a substantial amount of supercooling. Carefully taking into account the vacuum energy of the metastable minimum, we demonstrate that a significant fraction of the models parameter space can be excluded simply because the phase transition cannot complete. We argue this to be a powerful consistency check applicable to general theories based on classical scale invariance. Finally, we show that all remaining parameter points predict a sizable gravitational wave signal, so that the model can be fully tested by future gravitational wave observatories. In particular, most of the parameter space can already be probed by the upcoming LIGO science run starting in early 2019.
The simplest possibility to explain the baryon asymmetry of the Universe is to assume that radiation is created asymmetrically between baryons and anti-baryons after the inflation. We propose a new mechanism of this kind where CP-violating flavor oscillations of left-handed leptons in the reheating era distribute the lepton asymmetries partially into the right-handed neutrinos while net asymmetry is not created. The asymmetry stored in the right-handed neutrinos is later washed out by the lepton number violating decays, and it ends up with the net lepton asymmetry in the Standard Model particles, which is converted into the baryon asymmetry by the sphaleron process. This scenario works for a range of masses of the right-handed neutrinos while no fine-tuning among the masses is required. The reheating temperature of the Universe can be as low as $O(10)$~TeV if we assume that the decays of inflatons in the perturbative regime are responsible for the reheating. For the case of the reheating via the dissipation effects, the reheating temperature can be as low as $O(100)$~GeV.
71 - S. A. Owerre 2018
A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the $mathbb{Z}_2$ index. This quantity distinguishes a nontrivial topological system from a trivial one. A topological phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin-orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii-Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain $delta_c=frac{1}{2}big[ 1-(D/J)^2big]$, where $D$ and $J$ denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for $delta<delta_c$ and for $delta>delta_c$. The associated anomalous thermal Hall conductivity develops an abrupt change at $delta_c$, due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا