No Arabic abstract
Simulating the dynamics of a nonequilibrium quantum many-body system by computing the two-time Greens function associated with such a system is computationally challenging. However, we are often interested in the time diagonal of such a Greens function or time dependent physical observables that are functions of one time. In this paper, we discuss the possibility of using dynamic model decomposition (DMD), a data-driven model order reduction technique, to characterize one-time observables associated with the nonequilibrium dynamics using snapshots computed within a small time window. The DMD method allows us to efficiently predict long time dynamics from a limited number of trajectory samples. We demonstrate the effectiveness of DMD on a model two-band system. We show that, in the equilibrium limit, the DMD analysis yields results that are consistent with those produced from a linear response analysis. In the nonequilibrium case, the extrapolated dynamics produced by DMD is more accurate than a special Fourier extrapolation scheme presented in this paper. We point out a potential pitfall of the standard DMD method caused by insufficient spatial/momentum resolution of the discretization scheme. We show how this problem can be overcome by using a variant of the DMD method known as higher order DMD.
Machine learning (ML) architectures such as convolutional neural networks (CNNs) have garnered considerable recent attention in the study of quantum many-body systems. However, advanced ML approaches such as transfer learning have seldom been applied to such contexts. Here we demonstrate that a simple recurrent unit (SRU) based efficient and transferable sequence learning framework is capable of learning and accurately predicting the time evolution of one-dimensional (1D) Ising model with simultaneous transverse and parallel magnetic fields, as quantitatively corroborated by relative entropy measurements and magnetization between the predicted and exact state distributions. At a cost of constant computational complexity, a larger many-body state evolution was predicted in an autoregressive way from just one initial state, without any guidance or knowledge of any Hamiltonian. Our work paves the way for future applications of advanced ML methods in quantum many-body dynamics only with knowledge from a smaller system.
We introduce a family of non-integrable 1D lattice models that feature robust periodic revivals under a global quench from certain initial product states, thus generalizing the phenomenon of many-body scarring recently observed in Rydberg atom quantum simulators. Our construction is based on a systematic embedding of the single-site unitary dynamics into a kinetically-constrained many-body system. We numerically demonstrate that this construction yields new families of models with robust wave-function revivals, and it includes kinetically-constrained quantum clock models as a special case. We show that scarring dynamics in these models can be decomposed into a period of nearly free clock precession and an interacting bottleneck, shedding light on their anomalously slow thermalization when quenched from special initial states.
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case.
Contrary to the conventional wisdom in Hermitian systems, a continuous quantum phase transition between gapped phases is shown to occur without closing the energy gap $Delta$ in non-Hermitian quantum many-body systems. Here, the relevant length scale $xi simeq v_{rm LR}/Delta$ diverges because of the breakdown of the Lieb-Robinson bound on the velocity (i.e., unboundedness of $v_{rm LR}$) rather than vanishing of the energy gap $Delta$. The susceptibility to a change in the system parameter exhibits a singularity due to nonorthogonality of eigenstates. As an illustrative example, we present an exactly solvable model by generalizing Kitaevs toric-code model to a non-Hermitian regime.
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. Perhaps the most successful and ubiquitous of these approaches is density functional theory (DFT). Its Kohn-Sham formulation has been the basis for many fundamental physical insights, and it has been successfully applied to fields as diverse as quantum chemistry, condensed matter and dense plasmas. Despite the progress made by DFT and related schemes, however, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. Based on the Bohmian trajectories formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without employing the adiabatic Born-Oppenheimer approximation.