Do you want to publish a course? Click here

(P)reheating Effects of a Constrained Kahler Moduli Inflation Model

94   0   0.0 ( 0 )
 Added by Islam Khan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this talk, I discuss the effects, viability, and predictions of the string-theory-motivated Kahler Moduli Inflation I (KMII) potential, coupled to a light scalar field $chi$, which can provide a possible source for todays dark energy density due to the potentials non-vanishing minimum. Although the model is consistent with the current measured Cosmic Microwave Background (CMB) data, tighter constraints from future observations are required to test the viability of the KMII potential with its minimum equivalent to the observed cosmological constants energy density $rho_{Lambda_{mathrm{obs}}}$. We implement a Markov Chain Monte Carlo (MCMC) sampling method to compute the allowed model parameter ranges and bounds on the inflatons mass $m_{phi}$ and reheating temperature $T_{mathrm{reh}}$. Additionally, our lattice simulations predict stochastic gravitational-wave backgrounds generated during the inflaton oscillations that would be observable today in the $10^{9}$-$10^{11} , mathrm{Hz}$ frequency range. All the results and details will be included in our upcoming paper with the same title.



rate research

Read More

We show that double inflation is naturally realized in Kahler moduli inflation, which is caused by moduli associated with string compactification. We find that there is a small coupling between the two inflatons which leads to amplification of perturbations through parametric resonance in the intermediate stage of double inflation. This results in the appearance of a peak in the power spectrum of the primordial curvature perturbation. We numerically calculate the power spectrum and show that the power spectrum can have a peak on observationally interesing scales. We also compute the TT-spectrum of CMB based on the power spectrum with a peak and see that it better fits WMAP 7-years data.
The end of inflation is connected to the standard cosmological scenario through reheating. During reheating, the inflaton oscillates around the minimum of the potential and thus decays into the daughter particles that populate the Universe at later times. Using cosmological evolution for observable CMB scales from the time of Hubble crossing to the present time, we translate the constraint on the spectral index $n_s$ from Planck data to the constraint on the reheating scenario in the context of Kahler Moduli Inflation. In addition, we extend the de-facto analysis generally done only for the pivot scale to all the observable scales which crossed the Hubble radius during inflation. We study how the maximum number of e-folds varies for different scales, and the effect of the equation of state and potential parameters.
We present constraints on the reheating era within the string Fibre Inflation scenario, in terms of the effective equation-of-state parameter of the reheating fluid, $w_{reh}$. The results of the analysis, completely independent on the details of the inflaton physics around the vacuum, illustrate the behavior of the number of $e$-foldings during the reheating stage, $N_{reh}$, and of the final reheating temperature, $T_{reh}$, as functions of the scalar spectral index, $n_s$. We analyze our results with respect to the current bounds given by the PLANCK mission data and to upcoming cosmological experiments. We find that large values of the equation-of-state parameter ($w_{reh}>1/3$) are particularly favored as the scalar spectral index is of the order of $n_ssim 0.9680$, with a $sigma_{n_s}sim 0.002$ error. Moreover, we compare the behavior of the general reheating functions $N_{reh}$ and $T_{reh}$ in the Fibre Inflation scenario with that extracted by the class of the $alpha$-attractor models with $alpha=2$. We find that the corresponding reheating curves are very similar in the two cases.
We study the sensitivity of cosmological observables to the reheating phase following inflation driven by many scalar fields. We describe a method which allows semi-analytic treatment of the impact of perturbative reheating on cosmological perturbations using the sudden decay approximation. Focusing on $mathcal{N}$-quadratic inflation, we show how the scalar spectral index and tensor-to-scalar ratio are affected by the rates at which the scalar fields decay into radiation. We find that for certain choices of decay rates, reheating following multiple-field inflation can have a significant impact on the prediction of cosmological observables.
We study the evolution of the Universe at early stages, we discuss also preheating in the framework of hybrid braneworld inflation by setting conditions on the coupling constants $lambda $ and $g$ for effective production of $chi$-particles. Considering the phase between the time observable CMB scales crossed the horizon and the present time, we write reheating and preheating parameters $N_{re}$, $T_{re}$ and $N_{pre}$ in terms of the scalar spectral index $n_{s}$, and prove that, unlike the reheating case, the preheating duration does not depend on the values of the equation of state $omega ^{ast }$. We apply the slow-roll approximation in the high energy limit to constrain the parameters of D-term hybrid potential. We show also that some inflationary parameters, in particular, the spectral index $n_{s}$ demand that the potential parameter $alpha$ is bounded as $alpha geq 1$ to be consistent with $Planck$s data, while the ratio $r$ is in agreement with observation for $ alpha leq 1 $ considering high inflationary e-folds. We also propose an investigation of the brane tension effect on the reheating temperature. Comparing our results to recent CMB measurements, we study preheating and reheating parameters $N_{re}$, $T_{re}$ and $N_{pre}$ in the Hybrid D-term inflation model in the range $0.8leq alphaleq 1.1$, and conclude that $T_{re}$ and $N_{re}$ require $alpha leq 1$, while for $N_{pre}$ the condition $alpha leq 0.9$ must be satisfied, to be compatible with $Planck$s results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا