Do you want to publish a course? Click here

A numerical study of the statistics of roughness parameters for fluctuating interfaces

276   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-affine rough interfaces are ubiquitous in experimental systems, and display characteristic scaling properties as a signature of the nature of disorder in their supporting medium, i.e. of the statistical features of its heterogeneities. Different methods have been used to extract roughness information from such self-affine structures, and in particular their scaling exponents and associated prefactors. Notably, for an experimental characterization of roughness features, it is of paramount importance to properly assess sample-to-sample fluctuations of roughness parameters. Here, by performing scaling analysis based on displacement correlation functions in real and reciprocal space, we compute statistical properties of the roughness parameters. As an ideal, artifact-free reference case study and particularly targeting finite-size systems, we consider three cases of numerically simulated one-dimensional interfaces: (i) elastic lines under thermal fluctuations and free of disorder, (ii) directed polymers in equilibrium with a disordered energy landscape, and (iii) elastic lines in the critical depinning state when the external applied driving force equals the depinning force set by disorder. Our results shows that sample-to-sample fluctuations are rather large when measuring the roughness exponent. These fluctuations are also relevant for roughness amplitudes. Therefore a minimum of independent interface realizations (at least a few tens in our numerical simulations) should be used to guarantee sufficient statistical averaging, an issue often overlooked in experimental reports.



rate research

Read More

Ferroic domain walls are known to display the characteristic scaling properties of self-affine rough interfaces. Different methods have been used to extract roughness information in ferroelectric and ferromagnetic materials. Here, we review these different approaches, comparing roughness scaling analysis based on displacement autocorrelation functions in real space, both locally and globally, to reciprocal space methods. This allows us to address important practical issues such as the necessity of a sufficient statistical averaging. As an ideal, artifact-free reference case and particularly targeting finite-size systems, we consider two cases of numerically simulated interfaces, one in equilibrium with a disordered energy landscape and one corresponding to the critical depinning state when the external applied driving force equals the depinning force. We find that the use of the reciprocal space methods based on the structure factor allows the most robust extraction of the roughness exponent when enough statistics is available, while real space analysis based on the roughness function allows the most efficient exploitation of a dataset containing only a limited number of interfaces of variable length. This information is thus important for properly quantifying roughness exponents in ferroic materials.
Fluctuations of the interface between coexisting colloidal fluid phases have been measured with confocal microscopy. Due to a very low surface tension, the thermal motions of the interface are so slow, that a record can be made of the positions of the interface. The theory of the interfacial height fluctuations is developed. For a host of correlation functions, the experimental data are compared with the theoretical expressions. The agreement between theory and experiment is remarkably good.
Numerical studies of amorphous silicon in harmonic approximation show that the highest 3.5% of vibrational normal modes are localized. As vibrational frequency increases through the boundary separating localized from delocalized modes, near omega_c=70meV, (the mobility edge) there is a localization-delocalization (LD) transition, similar to a second-order thermodynamic phase transition. By a numerical study on a system with 4096 atoms, we are able to see exponential decay lengths of exact vibrational eigenstates, and test whether or not these diverge at omega_c. Results are consistent with a localization length xi which diverges above omega_c as (omega-omega_c)^{-p} where the exponent is p = 1.3 +/- 0.5. Below the mobility edge we find no evidence for a diverging correlation length. Such an asymmetry would contradict scaling ideas, and we suppose it is a finite-size artifact. If the scaling regime is narrower than our 1 meV resolution, then it cannot be seen directly on our finite system.
We compare phase transition and critical phenomena of bond percolation on Euclidean lattices, nonamenable graphs, and complex networks. On a Euclidean lattice, percolation shows a phase transition between the nonpercolating phase and percolating phase at the critical point. The critical point is stretched to a finite region, called the critical phase, on nonamenable graphs. To investigate the critical phase, we introduce a fractal exponent, which characterizes a subextensive order of the system. We perform the Monte Carlo simulations for percolation on two nonamenable graphs - the binary tree and the enhanced binary tree. The former shows the nonpercolating phase and the critical phase, whereas the latter shows all three phases. We also examine the possibility of critical phase in complex networks. Our conjecture is that networks with a growth mechanism have only the critical phase and the percolating phase. We study percolation on a stochastically growing network with and without a preferential attachment mechanism, and a deterministically growing network, called the decorated flower, to show that the critical phase appears in those models. We provide a finite-size scaling by using the fractal exponent, which would be a powerful method for numerical analysis of the phase transition involving the critical phase.
70 - A. Thion 2000
We explore the stability of the variance and skewness of the cosmic gravitational convergence field, using two different approaches: first we simulate a whole MEGACAM survey (100 sq. degrees). The reconstructed mass map, obtained from a shear map, shows that the state-of-the-art data analysis methods can measure weak-lensing statistics at angular scales ranging from 2.5 to 25. We looked also at the influence of a varying signal-to-noise ratio over the shear map (due to local variations of source density) on the mass reconstruction, by means of Monte-Carlo simulation. The effect at small scales can easily be corrected-for in most of the relevant cases. These results enhance the confidence in the capability of future large surveys to measure accurately cosmologically interesting quantities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا