Do you want to publish a course? Click here

First detection of VHE gamma-ray emission from TXS~1515--273, study of its X-ray variability and spectral energy distribution

132   0   0.0 ( 0 )
 Added by Serena Loporchio
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report here on the first multi-wavelength (MWL) campaign on the blazar TXS 1515-273, undertaken in 2019 and extending from radio to very-high-energy gamma rays (VHE). Up until now, this blazar had not been the subject of any detailed MWL observations. It has a rather hard photon index at GeV energies and was considered a candidate extreme high-synchrotronpeaked source. MAGIC observations resulted in the first-time detection of the source in VHE with a statistical significance of 7.6$sigma$. The average integral VHE flux of the source is 6 $pm$ 1% of the Crab nebula flux above 400 GeV. X-ray coverage was provided by Swift-XRT, XMMNewton, and NuSTAR. The long continuous X-ray observations were separated by $sim$ 9 h, both showing clear hour scale flares. In the XMM-Newton data, both the rise and decay timescales are longer in the soft X-ray than in the hard X-ray band, indicating the presence of a particle cooling regime. The X-ray variability timescales were used to constrain the size of the emission region and the strength of the magnetic field. The data allowed us to determine the synchrotron peak frequency and classify the source as a flaring high, but not extreme, synchrotron peaked object. Considering the constraints and variability patterns from the X-ray data, we model the broad-band spectral energy distribution. We applied a simple one-zone model, which could not reproduce the radio emission and the shape of the optical emission, and a two-component leptonic model with two interacting components, enabling us to reproduce the emission from radio to VHE band.



rate research

Read More

The study of gamma-ray blazars is usually hindered due to the lack of information on their redshifts and on their low energy photon fields. This information is key to understand the effect on the gamma-ray absorption due to either extragalactic background light and/or intrinsic absorption and emission processes. All this information has also an impact on the determination of the location of the emitting region within the relativistic jets. In this work a new optical spectroscopic characterization is presented for three gamma-ray blazars: S4 0954+65, TXS 1515-273 and RX J0812.0+0237. For all the three targets the redshift determination is successful, and for the first time in the case of TXS 1515-273 and RX J0812.0+0237. Their classification as BL~Lac type is confirmed based on these new optical spectra. For S4 0954+65 (z=$0.3694pm0.0011$) an estimation on the disk, broad line region and torus luminosities is performed based on the observed optical emission lines. The results from this study are compatible with the nature of S4 0954+65 as a transitional blazar. In the case of TXS 1515-273 ($z=0.1281pm 0.0004$), although its optical spectrum is dominated by the continuum emission from the jet, applying the pPXF technique, the stellar population can be unveiled and is compatible with an old and metallic population. It is also the case of RX J0812.0+0237 ($z=0.1721pm 0.0002$). Moreover, this work confirms that the optical spectrum from RX J0812.0+0237 is compatible with an extreme blazar classification.
Observations of very high energy gamma-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects allow a better understanding of the mechanisms at play. To investigate the spectral and temporal variability of VHE (>100 GeV) gamma-rays of the well-known high-frequency-peaked BL Lac object PKS 2155-304 with the H.E.S.S. imaging atmospheric Cherenkov telescopes over a wide range of flux states. Data collected from 2005 to 2007 are analyzed. Spectra are derived on time scales ranging from 3 years to 4 minutes. Light curve variability is studied through doubling timescales and structure functions, and is compared with red noise process simulations. The source is found to be in a low state from 2005 to 2007, except for a set of exceptional flares which occurred in July 2006. The quiescent state of the source is characterized by an associated mean flux level of 4.32 +/-0.09 x 10^-11 cm^-2 s^-1 above 200 GeV, or approximately 15% of the Crab Nebula, and a power law photon index of 3.53 +/-0.06. During the flares of July 2006, doubling timescales of ~2 min are found. The spectral index variation is examined over two orders of magnitude in flux, yielding different behaviour at low and high fluxes,which is a new phenomenon in VHE gamma-ray emitting blazars. The variability amplitude characterized by the fractional r.m.s. is strongly energy-dependent and is proportional to E^(0.19 +/- 0.01). The light curve r.m.s. correlates with the flux. This is the signature of a multiplicative process which can be accounted for as a red noise with a Fourier index of ~2. This unique data set shows evidence for a low level gamma-ray emission state from PKS 2155-304, which possibly has a different origin than the outbursts. The discovery of the light curve lognormal behaviour might be an indicator ..
Context. Recently, the high-energy (HE, 0.1-100 GeV) $gamma$-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic $gamma$-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) $gamma$-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE $gamma$-ray emission is detected with a statistical significance of 6.4 $sigma$. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the $1-10$ TeV energy range is $(1.4 pm 0.2) times 10^{35}$ erg/s. A luminosity of $(5 pm 1) times 10^{35}$ erg/s is reached during 20% of the orbit. HE and VHE $gamma$-ray emissions are anti-correlated. LMC P3 is the most luminous $gamma$-ray binary known so far.
We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of the VHE emission is centered near the peak of the coincident 12CO (J = 1-0) emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/- 0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2} s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the steady Crab Nebula emission above the same energy. We describe the observations and analysis of the object and briefly discuss the implications of the detection in a multiwavelength context.
We examine changes of the $gamma$-ray intensity observed from the direction of the binary system PSR B1259-63/LS 2883 during campaigns around its three periastron passages. A simple and straightforward method is applied to the published data obtained with the Imaging Atmospheric Cherenkov Technique. Regardless of many issues of the detection process, the method works only with numbers of very high energetic photons registered in the specified regions. Within the realm of this scheme, we recognized changes attributable to the variations of the intrinsic source activity at high levels of significance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا