No Arabic abstract
Water megamasers at 22 GHz with a gas disk configuration in galaxies provide the most precise measurements of supermassive black hole masses, as well as independent constraints on the Hubble constant in the nearby universe. The existence of other maser types, such as jet or outflow masers, represents another tracer for AGN science. However, the detection rate of water megamasers in galaxies is extremely low. Over 40 years, only $sim$ 160 galaxies are found to harbour maser emission, and $sim$ 30% of them show features in their maser emission that indicate a disk-like geometry. Therefore, increasing the detection rate of masers is a crucial task to allow expanding on maser studies. We present a comparison of mid-infrared spectroscopic data between a maser galaxy sample and a Seyfert 2 control sample. We find that maser galaxies show significant peculiarities in their mid-infrared spectra: (1) Maser galaxies tend to present stronger silicate absorption at $tau$ 9.7 $mu$m than the control sample, (2) PAH 11.3 $mu$m emission in maser galaxies is much weaker than in the control sample, (3) spectral indices at 20-30 $mu$m are steeper in maser galaxies than in the control sample and tend to be mid-infrared enhanced population. We conclude that there may be good indicators in mid-infrared and far-infrared which could differentiate maser and non-maser Seyfert 2 galaxies. Upcoming infrared facilities, such as the James Webb Space Telescope, may be able to exploit these and other useful criteria and tracers for water megamaser observations.
We present Spitzer/Infrared Spectrograph (IRS) 5-21 micron spectroscopic maps towards 12 regions in the Andromeda galaxy (M31). These regions include the nucleus, bulge, an active region in the star-forming ring, and 9 other regions chosen to cover a range of mid-to-far-infrared colours. In line with previous results, PAH feature ratios (6.2 micron and 7.7 micron features compared to the 11.2 micron feature) measured from our extracted M31 spectra, except the nucleus, strongly correlate. The equivalent widths of the main PAH features, as a function of metallicity and radiation hardness, are consistent with those observed for other nearby spiral and starburst galaxies. Reprocessed data from the ISOCAM instrument on the Infrared Space Observatory agree with the IRS data; early reports of suppressed 6-8 micron features and enhanced 11.3 micron feature intensity and FWHM apparently resulted from background-subtraction problems. The nucleus does not show any PAH emission but does show strong silicate emission at 9.7 micron. Furthermore, different spectral features (11.3 micron PAH emission, silicate emission and [NeIII] 15.5 micron line emission) have distinct spatial distributions in the nuclear region: the silicate emission is strongest towards the stellar nucleus, while the PAH emission peaks 15 arcsec north of the nucleus. The PAH feature ratios at this position are atypical with strong emission at 11.2 microns and 15-20 microns but weak emission at 6--8 microns. The nucleus itself is dominated by stellar light giving rise to a strong blue continuum and silicate emission.
Dual-comb spectroscopy has been proven a powerful tool in molecular characterization, which remains challenging to implement in the mid-infrared (MIR) region due to difficulties in the realization of two mutually locked comb sources and efficient photodetection. An effective way to overcome those limitations is optical upconversion; however, previously reported configurations are either demanding or inefficient. Here we introduce and experimentally demonstrate a variant of dual-comb spectroscopy called cross-comb spectroscopy, in which a MIR comb is upconverted via sum-frequency generation (SFG) with a near-infrared (NIR) comb with a shifted repetition rate and then interfered with a spectral extension of the NIR comb. We experimentally demonstrate a proof-of-concept measurement of atmospheric CO2 around 4.25 micrometer, with a 350-nm instantaneous bandwidth and 25000 resolved comb lines. Cross-comb spectroscopy can be realized using up- or down-conversion and offers an adaptable and efficient alternative to dual-comb spectroscopy outside the well-developed near-IR region, where having two mutually coherent sources and efficient photodetection is challenging. Moreover, the nonlinear gating in cross-comb spectroscopy promises a superior dynamic range compared to dual-comb spectroscopy.
We analyse a sample of 85 luminous (log(nuLnu(3um)/erg s-1)>45.5) quasars with restframe ~2-11 um spectroscopy from AKARI and Spitzer. Their high luminosity allows a direct determination of the near-infrared quasar spectrum free from host galaxy emission. A semi-empirical model consisting of a single template for the accretion disk and two blackbodies for the dust emission successfully reproduces the 0.1-10 um spectral energy distributions (SEDs). Excess emission at 1-2 um over the best-fitting model suggests that hotter dust is necessary in addition to the ~1200 K blackbody and the disk to reproduce the entire near-infrared spectrum. Variation in the extinction affecting the disk and in the relative strength of the disk and dust components accounts for the diversity of individual SEDs. Quasars with higher dust-to-disk luminosity ratios show slightly redder infrared continua and less prominent silicate emission. We find no luminosity dependence in the shape of the average infrared quasar spectrum. We generate a new quasar template that covers the restframe range 0.1-11 um, and separate templates for the disk and dust components. Comparison with other infrared quasar composites suggests that previous ones are less reliable in the 2-4 um range. Our template is the first one to provide a detailed view of the infrared emission on both sides of the 4 um bump.
We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate Active Galactic Nuclei (AGN) selected in the mid-infrared. This survey selects both normal and obscured AGN closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L_bol~10^10L_sun, to highly luminous quasars (L_bol~10^14L_sun), and with redshifts from 0-4.3. Samples of candidate AGN were selected through mid-infrared color cuts at several different 24 micron flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGN and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type-1 AGN with blue continua, 294 (44%) are type-2 objects with extinctions A_V>~5 towards their AGN, 96 (14%) are AGN with lower extinctions (A_V~1) and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. 50% of the survey objects have L_bol >10^12L_sun, in the quasar regime. We present composite spectra for type-2 quasars and for objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared - emission-line luminosity correlation and present the results of cross-correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) there exist mid-infrared selected AGN candidates which lack AGN signatures in their optical spectra, but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGN often differ.
We have carried out extensive and detailed photoionization modeling to successfully constrain the locations of different emission-line galaxies in optical and mid-infrared diagnostic diagrams. Our model grids cover a wide range in parameter space for the active galaxy continuum and starburst galaxies with different stellar population laws and metallicities. We compare the predicted AGN and star-formation mid-infrared line ratios [Ne III]15.56mm/[Ne II]12.81mm and [O IV]25.89mm/[Ne III]15.56mm to the observed values, and find that the best fit for the AGN is via a two-zone approximation. This two-zone approximation is a combination of a matter-bounded component, where [Ne III] and [O IV] are emitted efficiently, and a radiation-bounded component that maximizes [Ne II] emission. We overlay the predictions from this two-zone approximation onto the optical [O III]l5007/Hbeta and [N II]l6583/Halpha diagnostic diagram derived from the Sloan Digital Sky Survey, to find that the high-density and low-ionization radiation-bounded component in our two-zone AGN approximation model provides a good lower limit for [N II] emission. This establishes a new theoretical demarcation line for the minimum AGN contribution in this diagram. This new classification results by a factor of ~1.4 in a higher AGN population than predictions derived from previous divisions of star-forming galaxies. Similarly, we define a maximum AGN contribution in the [O III]/Hbeta and [N II]/Halpha diagram by using a two-zone approximation within a parameter range typical of the narrow-line region.