In this presentation, we analytically derive the dispersion equation for surface waves traveling along reactive boundaries which are periodically modulated in time. In addition, we show numerical results for the dispersion curves and importantly uncover that time-varying boundaries generate band gaps that can be controlled by engineering the modulation spectrum. Furthermore, we also point out an interesting effect of field amplification related to the existence of such band gaps for surface waves. The effect of amplification does not require the synchronization of signal and pumping waves. This unique property is very promising to be applied in surface-wave communications from microwave to optical frequencies.