Do you want to publish a course? Click here

A provably efficient monotonic-decreasing algorithm for shape optimization in Stokes flows by phase-field approaches

205   0   0.0 ( 0 )
 Added by Futuan Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we study shape optimization problems in the Stokes flows. By phase-field approaches, the resulted total objective function consists of the dissipation energy of the fluids and the Ginzburg--Landau energy functional as a regularizing term for the generated diffusive interface, together with Lagrangian multiplayer for volume constraint. An efficient decoupled scheme is proposed to implement by the gradient flow approach to decrease the objective function. In each loop, we first update the velocity field by solving the Stokes equation with the phase field variable given in the previous iteration, which is followed by updating the phase field variable by solving an Allen--Cahn-type equation using a stabilized scheme. We then take a cut-off post-processing for the phase-field variable to constrain its value in $[0,1]$. In the last step of each loop, the Lagrangian parameter is updated with an appropriate artificial time step. We rigorously prove that the proposed scheme permits an unconditionally monotonic-decreasing property, which allows us to use the adaptive mesh strategy. To enhance the overall efficiency of the algorithm, in each loop we update the phase field variable and Lagrangian parameter several time steps but update the velocity field only one time. Numerical results for various shape optimizations are presented to validate the effectiveness of our numerical scheme.



rate research

Read More

We study an optimization problem that aims to determine the shape of an obstacle that is submerged in a fluid governed by the Stokes equations. The mentioned flow takes place in a channel, which motivated the imposition of a Poiseuille-like input function on one end and a do-nothing boundary condition on the other. The maximization of the vorticity is addressed by the $L^2$-norm of the curl and the {it det-grad} measure of the fluid. We impose a Tikhonov regularization in the form of a perimeter functional and a volume constraint to address the possibility of topological change. Having been able to establish the existence of an optimal shape, the first order necessary condition was formulated by utilizing the so-called rearrangement method. Finally, numerical examples are presented by utilizing a finite element method on the governing states, and a gradient descent method for the deformation of the domain. On the said gradient descent method, we use two approaches to address the volume constraint: one is by utilizing the augmented Lagrangian method; and the other one is by utilizing a class of divergence-free deformation fields.
In this paper, we present an efficient numerical algorithm for solving the time-dependent Cahn--Hilliard--Navier--Stokes equations that model the flow of two phases with different densities. The pressure-correction step in the projection method consists of a Poisson problem with a modified right-hand side. Spatial discretization is based on discontinuous Galerkin methods with piecewise linear or piecewise quadratic polynomials. Flux and slope limiting techniques successfully eliminate the bulk shift, overshoot and undershoot in the order parameter, which is shown to be bound-preserving. Several numerical results demonstrate that the proposed numerical algorithm is effective and robust for modeling two-component immiscible flows in porous structures and digital rocks.
In this paper, we study a multi-scale deep neural network (MscaleDNN) as a meshless numerical method for computing oscillatory Stokes flows in complex domains. The MscaleDNN employs a multi-scale structure in the design of its DNN using radial scalings to convert the approximation of high frequency components of the highly oscillatory Stokes solution to one of lower frequencies. The MscaleDNN solution to the Stokes problem is obtained by minimizing a loss function in terms of L2 normof the residual of the Stokes equation. Three forms of loss functions are investigated based on vorticity-velocity-pressure, velocity-stress-pressure, and velocity-gradient of velocity-pressure formulations of the Stokes equation. We first conduct a systematic study of the MscaleDNN methods with various loss functions on the Kovasznay flow in comparison with normal fully connected DNNs. Then, Stokes flows with highly oscillatory solutions in a 2-D domain with six randomly placed holes are simulated by the MscaleDNN. The results show that MscaleDNN has faster convergence and consistent error decays in the simulation of Kovasznay flow for all four tested loss functions. More importantly, the MscaleDNN is capable of learning highly oscillatory solutions when the normal DNNs fail to converge.
96 - Olivier Bernard , ANGE 2020
We consider a coupled physical-biological model describing growth of microalgae in a raceway pond cultivation process, accounting for hydrodynamics. Our approach combines a biological model (based on the Han model) and shallow water dynamics equations that model the fluid into the raceway pond. We present an optimization procedure dealing with the topography to maximize the biomass production over one lap or multiple laps with a paddle wheel. On the contrary to a widespread belief in the microalgae field, the results show that a flat topography is optimal in a periodic regime. In other frameworks, non-trivial topographies can be obtained. We present some of them, e.g., when a mixing device is included in the model.
Hydrodynamics coupled phase field models have intricate difficulties to solve numerically as they feature high nonlinearity and great complexity in coupling. In this paper, we propose two second order, linear, unconditionally stable decoupling methods based on the Crank--Nicolson leap-frog time discretization for solving the Allen--Cahn--Navier--Stokes (ACNS) phase field model of two-phase incompressible flows. The ACNS system is decoupled via the artificial compression method and a splitting approach by introducing an exponential scalar auxiliary variable. We prove both algorithms are unconditionally long time stable. Numerical examples are provided to verify the convergence rate and unconditional stability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا