No Arabic abstract
Biased-noise qubits are a promising candidate for realizing hardware efficient fault-tolerant quantum computing. One promising biased-noise qubit is the Kerr cat qubit, which has recently been demonstrated experimentally. Despite various unique advantages of Kerr cat qubits, we explain how the noise bias of Kerr cat qubits is severely limited by heating-induced leakage in their current implementations. Then, we show that by adding frequency-selective single-photon loss to Kerr cat qubits we can counteract the leakage and thus recover much of their noise bias. We refer to such Kerr cat qubits combined with frequency-selective single-photon loss as colored Kerr cat qubits as they are protected by a colored dissipation. In particular, we show how a suitably engineered lossy environment can suppress the leakage and bit-flip errors of a Kerr cat qubit while not introducing any additional phase-flip errors. Since our scheme only requires single-photon loss, it can be readily implemented by using passive and linear elements. Moreover, our frequency-selectivity technique can be generally applied to energy-gap protected qubits whose computational basis states are given by near degenerate ground states of a Hamiltonian with a non-zero energy gap between the ground and excited state manifolds.
The development of robust architectures capable of large-scale fault-tolerant quantum computation should consider both their quantum error-correcting codes, and the underlying physical qubits upon which they are built, in tandem. Following this design principle we demonstrate remarkable error correction performance by concatenating the XZZX surface code with Kerr-cat qubits. We contrast several variants of fault-tolerant systems undergoing different circuit noise models that reflect the physics of Kerr-cat qubits. Our simulations show that our system is scalable below a threshold gate infidelity of $p_mathrm{CX} sim 6.5%$ within a physically reasonable parameter regime, where $p_mathrm{CX}$ is the infidelity of the noisiest gate of our system; the controlled-not gate. This threshold can be reached in a superconducting circuit architecture with a Kerr-nonlinearity of $10$MHz, a $sim 6.25$ photon cat qubit, single-photon lifetime of $gtrsim 64mu$s, and thermal photon population $lesssim 8%$. Such parameters are routinely achieved in superconducting circuits.
Stabilized cat codes can provide a biased noise channel with a set of bias-preserving (BP) gates, which can significantly reduce the resource overhead for fault-tolerant quantum computing. All existing schemes of BP gates, however, require adiabatic quantum evolution, with performance limited by excitation loss and non-adiabatic errors during the adiabatic gates. In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors, so that we can implement fast BP gates on Kerr-cat qubits with improved gate fidelity while maintaining high noise bias. When applied to concatenated quantum error correction, the fast BP gates can not only improve the logical error rate but also reduce resource overhead, which enables more efficient implementation of fault-tolerant quantum computing.
We propose a scheme to prepare optical Schrodinger-cat states in a traveling wave setting. Two states are similarly prepared via the self-Kerr effect and after mixing them, one mode is measured by homodyne detection. In the other mode a superposition of coherent states is conditionally prepared. The advantage of the scheme is that assuming a small Kerr effect one can prepare with high probability one from a set of Schrodinger-cat states. The measured value of the quadrature provides the information, which state from the set is actually prepared.
We reduce the extra qubits needed for two fault-tolerant quantum computing protocols: error correction, specifically syndrome bit measurement, and cat state preparation. For distance-three fault-tolerant syndrome extraction, we show an exponential reduction in qubit overhead over the previous best protocol. For a weight-$w$ stabilizer, we demonstrate that stabilizer measurement tolerating one fault needs at most $lceil log_2 w rceil + 1$ ancilla qubits. If qubits reset quickly, four ancillas suffice. We also study the preparation of entangled cat states, and prove that the overhead for distance-three fault tolerance is logarithmic in the cat state size. These results apply both to near-term experiments with a few qubits, and to the general study of the asymptotic resource requirements of syndrome measurement and state preparation. With $a$ flag qubits, previous methods use $O(a)$ flag patterns to identify faults. In order to use the same flag qubits more efficiently, we show how to use nearly all $2^a$ possible flag patterns, by constructing maximal-length paths through the $a$-dimensional hypercube.
We propose a protocol to implement multi-qubit geometric gates (i.e., the M{o}lmer-S{o}rensen gate) using photonic cat qubits. These cat qubits stored in high-$Q$ resonators are promising for hardware-efficient universal quantum computing. Specifically, in the limit of strong two-photon drivings, phase-flip errors of the cat qubits are effectively suppressed, leaving only a bit-flip error to be corrected. A geometric evolution guarantees the robustness of the protocol against stochastic noise along the evolution path. Moreover, by changing detunings of the cavity-cavity couplings at a proper time, the protocol can be robust against control imperfections (e.g., the total evolution time) without introducing extra noises into the system. As a result, the gate can produce multi-mode entangled cat states in a short time with high fidelities.