Do you want to publish a course? Click here

On the Geometry of Numerical Ranges Over Finite Fields

61   0   0.0 ( 0 )
 Added by Gage Hoefer
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Numerical ranges over a certain family of finite fields were classified in 2016 by a team including our fifth author. Soon afterward, in 2017 Ballico generalized these results to all finite fields and published some new results about the cardinality of the finite field numerical range. In this paper we study the geometry of these finite fields using the boundary generating curve, first introduced by Kippenhahn in 1951. We restrict our study to square matrices of dimension 2, with at least one eigenvalue in $mathbb F_{q^2}$.



rate research

Read More

75 - Jiangwei Xue , Chia-Fu Yu , 2021
In the paper [On superspecial abelian surfaces over finite fields II. J. Math. Soc. Japan, 72(1):303--331, 2020], Tse-Chung Yang and the first two current authors computed explicitly the number $lvert mathrm{SSp}_2(mathbb{F}_q)rvert$ of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field $mathbb{F}_q$ of even degree over the prime field $mathbb{F}_p$. There it was assumed that certain commutative $mathbb{Z}_p$-orders satisfy an etale condition that excludes the primes $p=2, 3, 5$. We treat these remaining primes in the present paper, where the computations are more involved because of the ramifications. This completes the calculation of $lvert mathrm{SSp}_2(mathbb{F}_q)rvert$ in the even degree case. The odd degree case was previous treated by Tse-Chung Yang and the first two current authors in [On superspecial abelian surfaces over finite fields. Doc. Math., 21:1607--1643, 2016]. Along the proof of our main theorem, we give the classification of lattices over local quaternion Bass orders, which is a new input to our previous works.
243 - Hel`ene Esnault 2007
If the $ell$-adic cohomology of a projective smooth variety, defined over a $frak{p}$-adic field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then any model over the ring of integers of $K$ has a $k$-rational point. This slightly improves our earlier result math/0405318: we needed there the model to be regular (but then our result was more general: we obtained a congruence for the number of points, and $K$ could be local of characteristic $p>0$).
231 - Lucas Reis , Qiang Wang 2021
In this paper we introduce the additive analogue of the index of a polynomial over finite fields. We study several problems in the theory of polynomials over finite fields in terms of their additive indices, such as value set sizes, bounds on multiplicative character sums, and characterizations of permutation polynomials.
Let ${mathbb F}_q$ be the finite field with $q=p^k$ elements with $p$ being a prime and $k$ be a positive integer. For any $y, zinmathbb{F}_q$, let $N_s(z)$ and $T_s(y)$ denote the numbers of zeros of $x_1^{3}+cdots+x_s^3=z$ and $x_1^3+cdots+x_{s-1}^3+yx_s^3=0$, respectively. Gauss proved that if $q=p, pequiv1pmod3$ and $y$ is non-cubic, then $T_3(y)=p^2+frac{1}{2}(p-1)(-c+9d)$, where $c$ and $d$ are uniquely determined by $4p=c^2+27d^2,~cequiv 1 pmod 3$ except for the sign of $d$. In 1978, Chowla, Cowles and Cowles determined the sign of $d$ for the case of $2$ being a non-cubic element of ${mathbb F}_p$. But the sign problem is kept open for the remaining case of $2$ being cubic in ${mathbb F}_p$. In this paper, we solve this sign problem by determining the sign of $d$ when $2$ is cubic in ${mathbb F}_p$. Furthermore, we show that the generating functions $sum_{s=1}^{infty} N_{s}(z) x^{s}$ and $sum_{s=1}^{infty} T_{s}(y)x^{s}$ are rational functions for any $z, yinmathbb F_q^*:=mathbb F_qsetminus {0}$ with $y$ being non-cubic over ${mathbb F}_q$ and also give their explicit expressions. This extends the theorem of Myerson and that of Chowla, Cowles and Cowles.
Let $mathbb{F}_q$ be the finite field of $q=p^mequiv 1pmod 4$ elements with $p$ being an odd prime and $m$ being a positive integer. For $c, y inmathbb{F}_q$ with $yinmathbb{F}_q^*$ non-quartic, let $N_n(c)$ and $M_n(y)$ be the numbers of zeros of $x_1^4+...+x_n^4=c$ and $x_1^4+...+x_{n-1}^4+yx_n^4=0$, respectively. In 1979, Myerson used Gauss sum and exponential sum to show that the generating function $sum_{n=1}^{infty}N_n(0)x^n$ is a rational function in $x$ and presented its explicit expression. In this paper, we make use of the cyclotomic theory and exponential sums to show that the generating functions $sum_{n=1}^{infty}N_n(c)x^n$ and $sum_{n=1}^{infty}M_{n+1}(y)x^n$ are rational functions in $x$. We also obtain the explicit expressions of these generating functions. Our result extends Myersons theorem gotten in 1979.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا