No Arabic abstract
We present observational constraints on the solar chromospheric heating contribution from acoustic waves with frequencies between 5 and 50 mHz. We utilize observations from the Dunn Solar Telescope in New Mexico complemented with observations from the Atacama Large Millimeter Array collected on 2017 April 23. The properties of the power spectra of the various quantities are derived from the spectral lines of Ca II 854.2 nm, H I 656.3 nm, and the millimeter continuum at 1.25 mm and 3 mm. At the observed frequencies the diagnostics almost all show a power law behavior, whose particulars (slope, peak and white noise floors) are correlated with the type of solar feature (internetwork, network, plage). In order to disentangle the vertical versus transverse plasma motions we examine two different fields of view; one near disk center and the other close to the limb. To infer the acoustic flux in the middle chromosphere, we compare our observations with synthetic observables from the time-dependent radiative hydrodynamic RADYN code. Our findings show that acoustic waves carry up to about 1 kW m$^{-2}$ of energy flux in the middle chromosphere, which is not enough to maintain the quiet chromosphere, contrary to previous publications.
The structure and energy balance of the solar chromosphere remain poorly known. We have used the imaging spectrometer IBIS at the Dunn Solar Telescope to obtain fast-cadence, multi-wavelength profile sampling of Halpha and Ca II 854.2 nm over a sizable two-dimensional field of view encompassing quiet-Sun network. We provide a first inventory of how the quiet chromosphere appears in these two lines by comparing basic profile measurements in the form of image displays, temporal-average displays, time slices, and pixel-by-pixel correlations. We find that the two lines can be markedly dissimilar in their rendering of the chromosphere, but that, nevertheless, both show evidence of chromospheric heating, particularly in and around network: Halpha in its core width, Ca II 854.2 in its brightness. We discuss venues for improved modeling.
In this work we use solar observations with the ALMA radio telescope at the wavelength of 1.21 mm. The aim of the analysis is to improve understanding of the solar chromosphere, a dynamic layer in the solar atmosphere between the photosphere and corona. The study has an observational and a modeling part. In the observational part full-disc solar images are analyzed. Based on a modified FAL atmospheric model, radiation models for various observed solar structures are developed. Finally, the observational and modeling results are compared and discussed.
The problem of solar chromospheric heating remains a challenging one with wider implications for stellar physics. Several studies in the recent past have shown that small-scale inclined magnetic field elements channel copious amount of energetic low-frequency acoustic waves, that are normally trapped below the photosphere. These magneto-acoustic waves are expected to shock at chromospheric heights contributing to chromospheric heating. In this work, exploiting simultaneous photospheric vector magnetic field, Doppler, continuum and line-core intensity (of FeI 6173 {AA}) observations from the Helioseismic and Magnetic Imager (HMI) and lower-atmospheric UV emission maps in the 1700 {AA} and 1600 {AA} channels of the Atmospheric Imaging Assembly (AIA), both onboard the Solar Dynamics Observatory (SDO) of NASA, we revisit the relationships between magnetic field properties (inclination and strength) and the acoustic wave propagation (phase travel time). We find that the flux of acoustic energy, in the 2 - 5 mHz frequency range, between the upper photosphere and lower chromosphere is in the range of 2.25 - 2.6 kW m$^{-2}$, which is about twice the previous estimates. We identify that the relatively less-inclined magnetic field elements in the quiet-Sun channel a significant amount of waves of frequency lower than the theoretical minimum for acoustic cut-off frequency due to magnetic inclination. We also derive indications that these waves steepen and start to dissipate within the heights ranges probed, while those let out due to inclined magnetic fields pass through. We explore connections with existing theoretical and numerical results that could explain the origin of these waves.
We report detection of oscillations in brightness temperature, size, and horizontal velocity of three small bright features in the chromosphere of a plage/enhanced-network region. The observations, which were taken with high temporal resolution (i.e., 2-sec cadence) with the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 3 (centred at 3 mm; 100 GHz), exhibit three small-scale features with oscillatory behaviour with different, but overlapping, distributions of period on the order of, on average, $90 pm 22$ s, $110 pm 12$ s and $66 pm 23$ s, respectively. We find anti-correlations between perturbations in brightness temperature and size of the three features, which suggest the presence of fast sausage-mode waves in these small structures. In addition, the detection of transverse oscillations (although with a larger uncertainty) may suggest as well the presence of Alfvenic oscillations which are likely representative of kink waves. This work demonstrates the diagnostic potential of high-cadence observations with ALMA for detecting high-frequency magnetohydrodynamic waves in the solar chromosphere. Such waves can potentially channel a vast amount of energy into the outer atmosphere of the Sun.
Magneto-hydrodynamic (MHD) Alfven waves have been a focus of laboratory plasma physics and astrophysics for over half a century. Their unique nature makes them ideal energy transporters, and while the solar atmosphere provides preferential conditions for their existence, direct detection has proved difficult as a result of their evolving and dynamic observational signatures. The viability of Alfven waves as a heating mechanism relies upon the efficient dissipation and thermalization of the wave energy, with direct evidence remaining elusive until now. Here we provide the first observational evidence of Alfven waves heating chromospheric plasma in a sunspot umbra through the formation of shock fronts. The magnetic field configuration of the shock environment, alongside the tangential velocity signatures, distinguish them from conventional umbral flashes. Observed local temperature enhancements of 5% are consistent with the dissipation of mode-converted Alfven waves driven by upwardly propagating magneto-acoustic oscillations, providing an unprecedented insight into the behaviour of Alfven waves in the solar atmosphere and beyond.