Do you want to publish a course? Click here

Hydrodynamical attractor and thermal particle production in heavy-ion collision

300   0   0.0 ( 0 )
 Added by V. Sreekanth
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Study of thermal particle production is crucial to understand the space-time evolution of the fireball produced in high energy heavy-ion collisions. We consider thermal particle production within the framework of relativistic viscous hydrodynamics and employ recently obtained analytical solutions of higher-order viscous hydrodynamics with longitudinal Bjorken expansion to calculate the spectra of dileptons and photons. Using these analytical solutions, we constrain the allowed initial states by demanding positivity and reality of energy density throughout the evolution. Further, we compute thermal particle spectra and study the particle yield in context of hydrodynamic attractors. We find that, of all allowed solutions, the evolution corresponding to attractor solution leads to maximum production of thermal particles.



rate research

Read More

78 - A. B. Kurepin 2020
The estimate based on the parton model is made on the rate of production of Super Heavy Particle ( SHP ) in subthreshold collision of heavy ions at LHC. For the one month run of lead-lead collision the yield of 16 TeV particle is of the order of 70 per year.
We utilize known exact analytic solutions of perfect fluid hydrodynamics to analytically calculate the polarization of baryons produced in heavy ion collisions. Assuming local thermodynamical equilibrium also for spin degrees of freedom, baryons get a net polarization at their formation (freeze-out). This polarization depends on the time evolution of the Quark-Gluon Plasma (QGP), which can be described as an almost perfect fluid. By using exact analytic solutions, we thus can analyze the necessity of rotation (and vorticity) for non-zero net polarization. In this paper we give the first analytical calculations for the polarization four-vector. We use two hydrodynamical solutions; one is the spherically symmetric Hubble flow (a somewhat oversimplified model, to demonstrate the methodology). The other solution which we use is a somewhat more involved one that corresponds to a rotating and accelerating expansion, and is thus well suited to investigate some main features of the time evolution of the QGP created in peripheral heavy-ion collisions (although there are still many numerous features of a real collision geometry that are beyond the reach of this simple model). Finally we illustrate and discuss our results on the polarization.
We study the charged particle and transverse energy production mechanism from AGS, SPS, RHIC to LHC energies in the framework of nucleon and quark participants. At RHIC and LHC energies, the number of nucleons-normalized charged particle and transverse energy density in pseudorapidity, which shows a monotonic rise with centrality, turns out to be an almost centrality independent scaling behaviour when normalized to the number of participant quarks. A universal function which is a combination of logarithmic and power-law, describes well the charged particle and transverse energy production both at nucleon and quark participant level for the whole range of collision energies. Energy dependent production mechanisms are discussed both for nucleonic and partonic level. Predictions are made for the pseudorapidity densities of transverse energy, charged particle multiplicity and their ratio (the barometric observable, $frac{dE_{rm{T}}/deta}{dN_{rm{ch}}/deta} ~equiv frac{E_{rm{T}}}{N_{rm{ch}}}$) at mid-rapidity for Pb+Pb collisions at $sqrt{s_{rm{NN}}}=5.5$ TeV. A comparison with models based on gluon saturation and statistical hadron gas is made for the energy dependence of $frac{E_{rm{T}}}{N_{rm{ch}}}$.
288 - J. Cleymans , S. Kabana , I. Kraus 2011
Recent results related to the chemical equilibration of hadrons in the final state of p-p and heavy ion collisions are reviewed.
369 - Jian-Hua Gao 2021
We discuss the helicity polarization which can be locally induced from both vorticity and helicity charge in non-central heavy ion collisions. Helicity charge redistribution can be generated in viscous fluid and contributes to azimuthal asymmetry of the polarization along global angular momentum or beam momentum. We also discuss on detecting the initial net helicity charge from topological charge fluctuation or initial color longitudinal field by the helicity polarization correlation of two hyperons and the helicity alignment of vector mesons in central heavy ion collisions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا