No Arabic abstract
Many robots move through the world by composing locomotion primitives like steps and turns. To do so well, robots need not have primitives that make intuitive sense to humans. This becomes of paramount importance when robots are damaged and no longer move as designed. Here we propose a goal function we call coverage, that represents the usefulness of a library of locomotion primitives in a manner agnostic to the particulars of the primitives themselves. We demonstrate the ability to optimize coverage on both simulated and physical robots, and show that coverage can be rapidly recovered after injury. This suggests that by optimizing for coverage, robots can sustain their ability to navigate through the world even in the face of significant mechanical failures. The benefits of this approach are enhanced by sample-efficient, data-driven approaches to system identification that can rapidly inform the optimization of primitives. We found that the number of degrees of freedom improved the rate of recovery of our simulated robots, a rare result in the fields of gait optimization and reinforcement learning. We showed that a robot with limbs made of tree branches (for which no CAD model or first principles model was available) is able to quickly find an effective high-coverage library of motion primitives. The optimized primitives are entirely non-obvious to a human observer, and thus are unlikely to be attainable through manual tuning.
We focus on the problem of developing energy efficient controllers for quadrupedal robots. Animals can actively switch gaits at different speeds to lower their energy consumption. In this paper, we devise a hierarchical learning framework, in which distinctive locomotion gaits and natural gait transitions emerge automatically with a simple reward of energy minimization. We use reinforcement learning to train a high-level gait policy that specifies gait patterns of each foot, while the low-level whole-body controller optimizes the motor commands so that the robot can walk at a desired velocity using that gait pattern. We test our learning framework on a quadruped robot and demonstrate automatic gait transitions, from walking to trotting and to fly-trotting, as the robot increases its speed. We show that the learned hierarchical controller consumes much less energy across a wide range of locomotion speed than baseline controllers.
Assist-as-needed (AAN) control aims at promoting therapeutic outcomes in robot-assisted rehabilitation by encouraging patients active participation. Impedance control is used by most AAN controllers to create a compliant force field around a target motion to ensure tracking accuracy while allowing moderate kinematic errors. However, since the parameters governing the shape of the force field are often tuned manually or adapted online based on simplistic assumptions about subjects learning abilities, the effectiveness of conventional AAN controllers may be limited. In this work, we propose a novel adaptive AAN controller that is capable of autonomously reshaping the force field in a phase-dependent manner according to each individuals motor abilities and task requirements. The proposed controller consists of a modified Policy Improvement with Path Integral algorithm, a model-free, sampling-based reinforcement learning method that learns a subject-specific impedance landscape in real-time, and a hierarchical policy parameter evaluation structure that embeds the AAN paradigm by specifying performance-driven learning goals. The adaptability of the proposed control strategy to subjects motor responses and its ability to promote short-term motor adaptations are experimentally validated through treadmill training sessions with able-bodied subjects who learned altered gait patterns with the assistance of a powered ankle-foot orthosis.
The planning of whole-body motion and step time for bipedal locomotion is constructed as a model predictive control (MPC) problem, in which a sequence of optimization problems needs to be solved online. While directly solving these problems is extremely time-consuming, we propose a predictive gait synthesizer to offer immediate solutions. Based on the full-dimensional model, a library of gaits with different speeds and periods is first constructed offline. Then the proposed gait synthesizer generates real-time gaits at 1kHz by synthesizing the gait library based on the online prediction of centroidal dynamics. We prove that the constructed MPC problem can ensure the uniform ultimate boundedness (UUB) of the CoM states and show that our proposed gait synthesizer can provide feasible solutions to the MPC optimization problems. Simulation and experimental results on a bipedal robot with 8 degrees of freedom (DoF) are provided to show the performance and robustness of this approach.
This paper presents a deep-learning based CPP algorithm, called Coverage Path Planning Network (CPPNet). CPPNet is built using a convolutional neural network (CNN) whose input is a graph-based representation of the occupancy grid map while its output is an edge probability heat graph, where the value of each edge is the probability of belonging to the optimal TSP tour. Finally, a greedy search is used to select the final optimized tour. CPPNet is trained and comparatively evaluated against the TSP tour. It is shown that CPPNet provides near-optimal solutions while requiring significantly less computational time, thus enabling real-time coverage path planning in partially unknown and dynamic environments.
Traditional motion planning approaches for multi-legged locomotion divide the problem into several stages, such as contact search and trajectory generation. However, reasoning about contacts and motions simultaneously is crucial for the generation of complex whole-body behaviors. Currently, coupling theses problems has required either the assumption of a fixed gait sequence and flat terrain condition, or non-convex optimization with intractable computation time. In this paper, we propose a mixed-integer convex formulation to plan simultaneously contact locations, gait transitions and motion, in a computationally efficient fashion. In contrast to previous works, our approach is not limited to flat terrain nor to a pre-specified gait sequence. Instead, we incorporate the friction cone stability margin, approximate the robots torque limits, and plan the gait using mixed-integer convex constraints. We experimentally validated our approach on the HyQ robot by traversing different challenging terrains, where non-convexity and flat terrain assumptions might lead to sub-optimal or unstable plans. Our method increases the motion generality while keeping a low computation time.