Do you want to publish a course? Click here

CHEF: A Cheap and Fast Pipeline for Iteratively Cleaning Label Uncertainties (Technical Report)

60   0   0.0 ( 0 )
 Added by Yinjun Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

High-quality labels are expensive to obtain for many machine learning tasks, such as medical image classification tasks. Therefore, probabilistic (weak) labels produced by weak supervision tools are used to seed a process in which influential samples with weak labels are identified and cleaned by several human annotators to improve the model performance. To lower the overall cost and computational overhead of this process, we propose a solution called CHEF (CHEap and Fast label cleaning), which consists of the following three components. First, to reduce the cost of human annotators, we use Infl, which prioritizes the most influential training samples for cleaning and provides cleaned labels to save the cost of one human annotator. Second, to accelerate the sample selector phase and the model constructor phase, we use Increm-Infl to incrementally produce influential samples, and DeltaGrad-L to incrementally update the model. Third, we redesign the typical label cleaning pipeline so that human annotators iteratively clean smaller batch of samples rather than one big batch of samples. This yields better over all model performance and enables possible early termination when the expected model performance has been achieved. Extensive experiments show that our approach gives good model prediction performance while achieving significant speed-ups.



rate research

Read More

We present a new video storage system (VSS) designed to decouple high-level video operations from the low-level details required to store and efficiently retrieve video data. VSS is designed to be the storage subsystem of a video data management system (VDBMS) and is responsible for: (1) transparently and automatically arranging the data on disk in an efficient, granular format; (2) caching frequently-retrieved regions in the most useful formats; and (3) eliminating redundancies found in videos captured from multiple cameras with overlapping fields of view. Our results suggest that VSS can improve VDBMS read performance by up to 54%, reduce storage costs by up to 45%, and enable developers to focus on application logic rather than video storage and retrieval.
194 - Ji Sun , Dong Deng , Ihab Ilyas 2019
An end-to-end data integration system requires human feedback in several phases, including collecting training data for entity matching, debugging the resulting clusters, confirming transformations applied on these clusters for data standardization, and finally, reducing each cluster to a single, canonical representation (or golden record). The traditional wisdom is to sequentially apply the human feedback, obtained by asking specific questions, within some budget in each phase. However, these questions are highly correlated; the answer to one can influence the outcome of any of the phases of the pipeline. Hence, interleaving them has the potential to offer significant benefits. In this paper, we propose a human-in-the-loop framework that interleaves different types of questions to optimize human involvement. We propose benefit models to measure the quality improvement from asking a question, and cost models to measure the human time it takes to answer a question. We develop a question scheduling framework that judiciously selects questions to maximize the accuracy of the final golden records. Experimental results on three real-world datasets show that our holistic method significantly improves the quality of golden records from 70% to 90%, compared with the state-of-the-art approaches.
We propose a class of functional dependencies for temporal graphs, called TGFDs. TGFDs capture both attribute-value dependencies and topological structures of entities over a valid period of time in a temporal graph. It subsumes graph functional dependencies (gfds) and conditional functional dependencies (CFDs) as a special case. We study the foundations of TGFDs including satisfiability, implication and validation. We show that the satisfiability and validation problems are coNP-complete and the implication problem is NP-complete. We also present an axiomatization of TGFDs and provide the proof of the soundness and completeness of the axiomatization.
Linked Open Data (LOD) is the publicly available RDF data in the Web. Each LOD entity is identfied by a URI and accessible via HTTP. LOD encodes globalscale knowledge potentially available to any human as well as artificial intelligence that may want to benefit from it as background knowledge for supporting their tasks. LOD has emerged as the backbone of applications in diverse fields such as Natural Language Processing, Information Retrieval, Computer Vision, Speech Recognition, and many more. Nevertheless, regardless of the specific tasks that LOD-based tools aim to address, the reuse of such knowledge may be challenging for diverse reasons, e.g. semantic heterogeneity, provenance, and data quality. As aptly stated by Heath et al. Linked Data might be outdated, imprecise, or simply wrong: there arouses a necessity to investigate the problem of linked data validity. This work reports a collaborative effort performed by nine teams of students, guided by an equal number of senior researchers, attending the International Semantic Web Research School (ISWS 2018) towards addressing such investigation from different perspectives coupled with different approaches to tackle the issue.
Real-world datasets are dirty and contain many errors. Examples of these issues are violations of integrity constraints, duplicates, and inconsistencies in representing data values and entities. Learning over dirty databases may result in inaccurate models. Users have to spend a great deal of time and effort to repair data errors and create a clean database for learning. Moreover, as the information required to repair these errors is not often available, there may be numerous possible cle

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا