Do you want to publish a course? Click here

Recovery of a general nonlinearity in the semilinear wave equation

161   0   0.0 ( 0 )
 Added by Plamen Stefanov
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study the inverse problem of recovery a non-linearity $f(x,u)$, which is compactly supported in $x$, in the semilinear wave equation $u_{tt}-Delta u+ f(x,u)=0$. We probe the medium with either complex or real-valued harmonic waves of wavelength $sim h$ and amplitude $sim 1$. They propagate in a regime where the non-linearity affects the subprincipal but not the principal term, except for the zeroth harmonics. We measure the transmitted wave when it exits $text{supp}_x f$. We show that one can recover $f(x,u)$ when it is an odd function of $u$, and we can recover $alpha(x)$ when $f(x,u)=alpha(x)u^{2m}$. This is done in an explicit way as $hto0$.



rate research

Read More

In this paper, we study the blow-up of solutions for semilinear wave equations with scale-invariant dissipation and mass in the case in which the model is somehow wave-like. A Strauss type critical exponent is determined as the upper bound for the exponent in the nonlinearity in the main theorems. Two blow-up results are obtained for the sub-critical case and for the critical case, respectively. In both cases, an upper bound lifespan estimate is given.
In this note, we prove blow-up results for semilinear wave models with damping and mass in the scale-invariant case and with nonlinear terms of derivative type. We consider the single equation and the weakly coupled system. In the first case we get a blow-up result for exponents below a certain shift of the Glassey exponent. For the weakly coupled system we find as critical curve a shift of the corresponding curve for the weakly coupled system of semilinear wave equations with the same kind of nonlinearities. Our approach follows the one for the respective classical wave equation by Zhou Yi. In particular, an explicit integral representation formula for a solution of the corresponding linear scale-invariant wave equation, which is derived by using Yagdjians integral transform approach, is employed in the blow-up argument. While in the case of the single equation we may use a comparison argument, for the weakly coupled system an iteration argument is applied.
In this paper, we study a class of nonlinear Choquard type equations involving a general nonlinearity. By using the method of penalization argument, we show that there exists a family of solutions having multiple concentration regions which concentrate at the minimum points of the potential $V$. Moreover, the monotonicity of $f(s)/s$ and the so-called Ambrosetti-Rabinowitz condition are not required.
158 - Hui Wei , Shuguan Ji 2021
We consider the periodic solutions of a semilinear variable coefficient wave equation arising from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. The variable coefficient characterizes the inhomogeneity of media and its presence usually leads to the destruction of the compactness of the inverse of linear wave operator with periodic-Dirichlet boundary conditions on its range. In the pioneering work of Barbu and Pavel (1997), it gives the existence and regularity of periodic solution for Lipschitz, nonresonant and monotone nonlinearity under the assumption $eta_u>0$ (see Sect. 2 for its definition) on the coefficient $u(x)$ and leaves the case $eta_u=0$ as an open problem. In this paper, by developing the invariant subspace method and using the complete reduction technique and Leray-Schauder theory, we obtain the existence of periodic solutions for such a problem when the nonlinear term satisfies the asymptotic nonresonance conditions. Our result not only does not need any requirements on the coefficient except for the natural positivity assumption (i.e., $u(x)>0$), but also does not need the monotonicity assumption on the nonlinearity. In particular, when the nonlinear term is an odd function and satisfies the global nonresonance conditions, there is only one (trivial) solution to this problem on the invariant subspace.
We study the inverse problem of recovery a compactly supported non-linearity in the semilinear wave equation $u_{tt}-Delta u+ alpha(x) |u|^2u=0$, in two and three dimensions. We probe the medium with complex-valued harmonic waves of wavelength $h$ and amplitude $h^{-1/2}$, then they propagate in the weakly non-linear regime; and measure the transmitted wave when it exits the support of $alpha$. We show that one can extract the Radon transform of $alpha$ from the phase shift of such waves, and then one can recover $alpha$. We also show that one can probe the medium with real-valued harmonic waves and obtain uniqueness for the linearized problem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا