Do you want to publish a course? Click here

A Duality-based Approach for Real-time Obstacle Avoidance between Polytopes with Control Barrier Functions

65   0   0.0 ( 0 )
 Added by Jun Zeng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Developing controllers for obstacle avoidance between polytopes is a challenging and necessary problem for navigation in a tight space. Traditional approaches can only formulate the obstacle avoidance problem as an offline optimization problem. To address these challenges, we propose a duality-based safety-critical optimal control using control barrier functions for obstacle avoidance between polytopes, which can be solved in real-time with a QP-based optimization problem. A dual optimization problem is introduced to represent the minimum distance between polytopes and the Lagrangian function for the dual form is applied to construct a control barrier function. We demonstrate the proposed controller on a moving sofa problem where non-conservative maneuvers can be achieved in a tight space.



rate research

Read More

This paper introduces control barrier functions for discrete-time systems, which can be shown to be necessary and sufficient for controlled invariance of a given set. Moreover, we propose nonlinear discrete-time control barrier functions for partially control affine systems that lead to controlled invariance conditions that are affine in the control input, leading to a tractable formulation that enables us to handle the safety optimal control problem for a broader range of applications with more complicated safety conditions than existing approaches. In addition, we develop mixed-integer formulations for basic and secondary Boolean compositions of multiple control barrier functions and further provide mixed-integer constraints for piecewise control barrier functions. Finally, we apply these discrete-time control barrier function tools to automotive safety problems of lane keeping and obstacle avoidance, which are shown to be effective in simulation.
Safety and stability are common requirements for robotic control systems; however, designing safe, stable controllers remains difficult for nonlinear and uncertain models. We develop a model-based learning approach to synthesize robust feedback controllers with safety and stability guarantees. We take inspiration from robust convex optimization and Lyapunov theory to define robust control Lyapunov barrier functions that generalize despite model uncertainty. We demonstrate our approach in simulation on problems including car trajectory tracking, nonlinear control with obstacle avoidance, satellite rendezvous with safety constraints, and flight control with a learned ground effect model. Simulation results show that our approach yields controllers that match or exceed the capabilities of robust MPC while reducing computational costs by an order of magnitude.
Artificial potential fields (APFs) and their variants have been a staple for collision avoidance of mobile robots and manipulators for almost 40 years. Its model-independent nature, ease of implementation, and real-time performance have played a large role in its continued success over the years. Control barrier functions (CBFs), on the other hand, are a more recent development, commonly used to guarantee safety for nonlinear systems in real-time in the form of a filter on a nominal controller. In this paper, we address the connections between APFs and CBFs. At a theoretic level, we prove that APFs are a special case of CBFs: given a APF one obtains a CBFs, while the converse is not true. Additionally, we prove that CBFs obtained from APFs have additional beneficial properties and can be applied to nonlinear systems. Practically, we compare the performance of APFs and CBFs in the context of obstacle avoidance on simple illustrative examples and for a quadrotor, both in simulation and on hardware using onboard sensing. These comparisons demonstrate that CBFs outperform APFs.
The need for robust control laws is especially important in safety-critical applications. We propose robust hybrid control barrier functions as a means to synthesize control laws that ensure robust safety. Based on this notion, we formulate an optimization problem for learning robust hybrid control barrier functions from data. We identify sufficient conditions on the data such that feasibility of the optimization problem ensures correctness of the learned robust hybrid control barrier functions. Our techniques allow us to safely expand the region of attraction of a compass gait walker that is subject to model uncertainty.
Motivated by the lack of systematic tools to obtain safe control laws for hybrid systems, we propose an optimization-based framework for learning certifiably safe control laws from data. In particular, we assume a setting in which the system dynamics are known and in which data exhibiting safe system behavior is available. We propose hybrid control barrier functions for hybrid systems as a means to synthesize safe control inputs. Based on this notion, we present an optimization-based framework to learn such hybrid control barrier functions from data. Importantly, we identify sufficient conditions on the data such that feasibility of the optimization problem ensures correctness of the learned hybrid control barrier functions, and hence the safety of the system. We illustrate our findings in two simulations studies, including a compass gait walker.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا