No Arabic abstract
We study collective modes in anisotropic plasmas of quarks and gluons using a quasi-particle picture and a hard loop approximation. We use a general class of anisotropic distribution functions, and we consider chirally asymmetric systems. We introduce a complete tensor basis to decompose the gluon polarization tensor into a set of nine scalar functions. We derive and solve the corresponding dispersion equations. Imaginary modes are particularly important because of their potential influence on plasma dynamics. We explore in detail their dependence on the chiral chemical potential and the parameters that characterise the anisotropy of the system. We show that our generalized distributions produce dispersion relations that are much richer in structure than those obtained with a simple one parameter deformation of an isotropic distribution. In addition, the size and domain of the imaginary solutions are enhanced, relative to those obtained with a one parameter deformation. Finally, we show that the influence of even a very small chiral chemical potential is significantly magnified when anisotropy is present.
We perform numerical simulations of the QCD Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. We provide an estimate of the coupling of jets to a hot plasma which is independent of infrared cutoffs. For weakly-coupled anisotropic plasmas the local rotational symmetry in momentum space is broken. The fields develop unstable modes, forming configurations where B_t>E_t and E_z>B_z. This provides a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth.
Due to Pauli blocking of intermediate states, the scattering matrix (or $T$ matrix) of two fermionic atoms in a Fermi gas becomes different from that of two atoms in free space. This effect becomes particularly important near a Feshbach resonance, where the interaction in free space is very strong but becomes effectively suppressed in the medium. We calculate the in-medium $T$ matrix in ladder approximation and study its effects on the properties of collective modes of a trapped gas in the normal-fluid phase. We introduce the in-medium interaction on both sides of the Boltzmann equation, namely in the calculation of the mean field and in the calculation of the collision rate. This allows us to explain the observed upward shift of the frequency of the quadrupole mode in the collisionless regime. By including the mean field, we also improve considerably the agreement with the measured temperature dependence of frequency and damping rate of the scissors mode, whereas the use of the in-medium cross section deteriorates the description, in agreement with previous work.
I use the holographic gauge/gravity duality to systematically calculate the jet quenching parameters in strongly coupled anisotropic plasmas in the presence of external magnetic fields. The magnetic field breaks down spatial rotation symmetry from $SO(3)$ to $SO(2)$, leading to the presence of multiple anisotropic jet quenching parameters, which are evaluated here in two quite different holographic settings. One of them corresponds to a top-down deformation of the strongly coupled $mathcal{N} = 4$ Super Yang-Mills plasma triggered by an external magnetic field, while the other one is a bottom-up Einstein-Maxwell-Dilaton model of phenomenological relevance for high energy peripheral heavy ion collisions, since it is able to provide a quantitative description of $(2+1)$-flavors lattice QCD thermodynamics with physical quark masses at zero and nonzero magnetic fields. I find for both models an overall enhancement of all the anisotropic jet quenching parameters with increasing magnetic fields. Moreover, I also conclude that for both models transverse momentum broadening is larger in transverse directions than in the direction of the magnetic field. Since these conclusions are shown to hold for two rather different holographic setups at finite temperature and magnetic fields, they are suggested as fairly robust features of strongly coupled anisotropic magnetized plasmas.
We establish the existence of a far-from-equilibrium attractor in weakly-coupled gauge theory undergoing one-dimensional Bjorken expansion. We demonstrate that the resulting far-from-equilibrium evolution is insensitive to certain features of the initial condition, including both the initial momentum-space anisotropy and initial occupancy. We find that this insensitivity extends beyond the energy-momentum tensor to the detailed form of the one-particle distribution function. Based on our results, we assess different procedures for reconstructing the full one-particle distribution function from the energy-momentum tensor along the attractor and discuss implications for the freeze-out procedure used in the phenomenological analysis of ultra-relativistic nuclear collisions.
Many features of multiparticle production in ultra-relativistic nuclear collisions reflect the collision geometry and other collision characteristics determining the initial conditions. As the initial conditions affect to a different degree all the particles, it leads to truly multiparticle effects often referred to as anisotropic collective flow. Studying anisotropic flow in nuclear collisions provides unique and invaluable information about the system evolution and the physics of multiparticle production in general. Being not able to cover all aspects of anisotropic flow in one lecture, I decided in the first part of the lecture to discuss briefly a few important and established results, and in the second part, to focus, in a little more detail, on one recent development -- a recent progress in our understanding of the role of fluctuations in the initial conditions. I also discuss some future measurements that might reveal further details of the multiparticle production processes.