Do you want to publish a course? Click here

Reconstruction of ultrafast exciton dynamics with a phase-retrieval algorithm

108   0   0.0 ( 0 )
 Added by Bruno Moio
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first step to gain optical control over the ultrafast processes initiated by light in solids is a correct identification of the physical mechanisms at play. Among them, exciton formation has been identified as a crucial phenomenon which deeply affects the electro-optical properties of most semiconductors and insulators of technological interest. While recent experiments based on attosecond spectroscopy techniques have demonstrated the possibility to observe the early-stage exciton dynamics, the description of the underlying exciton properties remains non-trivial. In this work we propose a new method called extended Ptychographic Iterative engine for eXcitons (ePIX), capable of reconstructing the main physical properties which determine the evolution of the quasi-particle with no prior knowledge of the exact relaxation dynamics or the pump temporal characteristics. By demonstrating its accuracy even when the exciton dynamics is comparable to the pump pulse duration, ePIX is established as a powerful approach to widen our knowledge of solid-state physics.



rate research

Read More

We present a new method for real- and complex-valued image reconstruction from two intensity measurements made in the Fourier plane: the Fourier magnitude of the unknown image, and the intensity of the interference pattern arising from superimposition of the original signal with a reference beam. This approach can provide significant advantages in digital holography since it poses less stringent requirements on the reference beam. In particular, it does not require spatial separation between the sought signal and the reference beam. Moreover, the reference beam need not be known precisely, and in fact, may contain severe errors, without leading to a deterioration in the reconstruction quality. Numerical simulations are presented to demonstrate the speed and quality of reconstruction.
Coherent diffraction imaging (CDI) is high-resolution lensless microscopy that has been applied to image a wide range of specimens using synchrotron radiation, X-ray free electron lasers, high harmonic generation, soft X-ray laser and electrons. Despite these rapid advances, it remains a challenge to reconstruct fine features in weakly scattering objects such as biological specimens from noisy data. Here we present an effective iterative algorithm, termed oversampling smoothness (OSS), for phase retrieval of noisy diffraction intensities. OSS exploits the correlation information among the pixels or voxels in the region outside of a support in real space. By properly applying spatial frequency filters to the pixels or voxels outside the support at different stage of the iterative process (i.e. a smoothness constraint), OSS finds a balance between the hybrid input-output (HIO) and error reduction (ER) algorithms to search for a global minimum in solution space, while reducing the oscillations in the reconstruction. Both our numerical simulations with Poisson noise and experimental data from a biological cell indicate that OSS consistently outperforms the HIO, ER-HIO and noise robust (NR)-HIO algorithms at all noise levels in terms of accuracy and consistency of the reconstructions. We expect OSS to find application in the rapidly growing CDI field as well as other disciplines where phase retrieval from noisy Fourier magnitudes is needed.
Light-induced magnetization changes, such as all-optical switching, skyrmion nucleation, and intersite spin transfer, unfold on temporal and spatial scales down to femtoseconds and nanometers, respectively. Pump-probe spectroscopy and diffraction studies indicate that spatio-temporal dynamics may drastically affect the non-equilibrium magnetic evolution. Yet, direct real-space magnetic imaging on the relevant timescale has remained challenging. Here, we demonstrate ultrafast high-harmonic nanoscopy employing circularly polarized high-harmonic radiation for real-space imaging of femtosecond magnetization dynamics. We observe the reversible and irreversible evolution of nanoscale spin textures following femtosecond laser excitation. Specifically, we map quenched magnetic domains and localized spin structures in Co/Pd multilayers with a sub-wavelength spatial resolution down to 16 nm, and strobosocopically trace the local magnetization dynamics with 40 fs temporal resolution. Our approach enables the highest spatio-temporal resolution of magneto-optical imaging to date. Facilitating ultrafast imaging with an extreme sensitivity to various microscopic degrees of freedom expressed in chiral and linear dichroism, we envisage a wide range of applications spanning magnetism, phase transitions, and carrier dynamics.
The propagation of ultrashort pulses in optical fibre displays complex nonlinear dynamics that find important applications in fields such as high power pulse compression and broadband supercontinuum generation. Such nonlinear evolution however, depends sensitively on both the input pulse and fibre characteristics, and optimizing propagation for application purposes requires extensive numerical simulations based on generalizations of a nonlinear Schrodinger-type equation. This is computationally-demanding and creates a severe bottleneck in using numerical techniques to design and optimize experiments in real-time. Here, we present a solution to this problem using a machine-learning based paradigm to predict complex nonlinear propagation in optical fibres with a recurrent neural network, bypassing the need for direct numerical solution of a governing propagation model. Specifically, we show how a recurrent neural network with long short-term memory accurately predicts the temporal and spectral evolution of higher-order soliton compression and supercontinuum generation, solely from a given transform-limited input pulse intensity profile. Comparison with experiments for the case of soliton compression shows remarkable agreement in both temporal and spectral domains. In optics, our results apply readily to the optimization of pulse compression and broadband light sources, and more generally in physics, they open up new perspectives for studies in all nonlinear Schrodinger-type systems in studies of Bose-Einstein condensates, plasma physics, and hydrodynamics.
Visualizing ultrafast dynamics at the atomic scale requires time-resolved pump-probe characterization with femtosecond temporal resolution. For single-shot ultrafast electron diffraction (UED) with fully relativistic electron bunch probes, existing techniques are limited by the achievable electron probe bunch length, charge, and timing jitter. We present the first experimental demonstration of pump-probe UED with THz-driven compression and time-stamping that enable UED probes with unprecedented temporal resolution. This technique utilizes two counter-propagating quasi-single-cycle THz pulses generated from two OH-1 organic crystals coupled into an optimized THz compressor structure. Ultrafast dynamics of photoexcited bismuth films show an improved temporal resolution from 178 fs down to 85 fs when the THz-compressed UED probes are used with no time-stamping correction. Furthermore, we use a novel time-stamping technique to reveal transient oscillations in the dynamical response of THz-excited single-crystal gold films previously inaccessible by standard UED, achieving a time-stamped temporal resolution down to 5 fs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا