No Arabic abstract
Using radial velocity measurements from four instruments, we report the mass and density of a $2.043pm0.069 ~rm{R}_{oplus}$ sub-Neptune orbiting the quiet K-dwarf Wolf 503 (HIP 67285). In addition, we present improved orbital and transit parameters by analyzing previously unused short-cadence $K2$ campaign 17 photometry and conduct a joint radial velocity-transit fit to constrain the eccentricity at $0.41pm0.05$. The addition of a transit observation by $Spitzer$ also allows us to refine the orbital ephemeris in anticipation of further follow-up. Our mass determination, $6.26^{+0.69}_{-0.70}~rm{M}_{odot}$, in combination with the updated radius measurements, gives Wolf 503 b a bulk density of $rho = 2.92pm ^{+0.50}_{-0.44}$ $rm{g}~rm{cm}^{-3}$. Using interior composition models, we find this density is consistent with an Earth-like core with either a substantial $rm{H}_2rm{O}$ mass fraction ($45^{+19.12}_{-16.15}%$) or a modest H/He envelope ($0.5pm0.28%$). The low H/He mass fraction, along with the old age of Wolf 503 ($11pm2$ Gyrs), makes this sub-Neptune an opportune subject for testing theories of XUV-driven mass loss while the brightness of its host ($J=8.3$ mag) makes it an attractive target for transmission spectroscopy.
Since its launch in 2009, the Kepler telescope has found thousands of planets with radii between that of Earth and Neptune. Recent studies of the distribution of these planets have revealed a rift in the population near 1.5-2.0$R_{bigoplus}$, informally dividing these planets into super-Earths and sub-Neptunes. The origin of this division is not well understood, largely because the majority of planets found by Kepler orbit distant, dim stars and are not amenable to radial velocity follow-up or transit spectroscopy, making bulk density and atmospheric measurements difficult. Here, we present the discovery and validation of a newly found $2.03^{+0.08}_{-0.07}~R_{bigoplus}$ planet in direct proximity to the radius gap, orbiting the bright ($J=8.32$~mag), nearby ($D=44.5$~pc) high proper motion star Wolf 503 (EPIC 212779563). We classify Wolf 503 as a K3.5V star and member of the thick disc population. We determine the possibility of a companion star and false positive detection to be extremely low using both archival images and high-contrast adaptive optics images from the Palomar observatory. The brightness of the host star makes Wolf 503b a prime target for prompt radial velocity follow-up, HST transit spectroscopy, as well as detailed atmospheric characterization with JWST. With its measured radius near the gap in the planet radius and occurrence rate distribution, Wolf 503b offers a key opportunity to better understand the origin of this radius gap as well as the nature of the intriguing populations of super-Earths and sub-Neptunes as a whole.
Context. The presence of a small-mass planet (M$_p<$0.1,M$_{Jup}$) seems, to date, not to depend on metallicity, however, theoretical simulations have shown that stars with subsolar metallicities may be favoured for harbouring smaller planets. A large, dedicated survey of metal-poor stars with the HARPS spectrograph has thus been carried out to search for Neptunes and super-Earths. Aims. In this paper, we present the analysis of object{HD175607}, an old G6 star with metallicity [Fe/H] = -0.62. We gathered 119 radial velocity measurements in 110 nights over a time span of more than nine years. Methods. The radial velocities were analysed using Lomb-Scargle periodograms, a genetic algorithm, a Markov chain Monte Carlo analysis, and a Gaussian processes analysis. The spectra were also used to derive stellar properties. Several activity indicators were analysed to study the effect of stellar activity on the radial velocities. Results. We find evidence for the presence of a small Neptune-mass planet (M$_{p}sin i = 8.98pm1.10$,M$_{oplus}$) orbiting this star with an orbital period $P = 29.01pm0.02$, days in a slightly eccentric orbit ($e=0.11pm0.08$). The period of this Neptune is close to the estimated rotational period of the star. However, from a detailed analysis of the radial velocities together with the stellar activity, we conclude that the best explanation of the signal is indeed the presence of a planetary companion rather than stellar related. An additional longer period signal ($Psim 1400$,d) is present in the data, for which more measurements are needed to constrain its nature and its properties. Conclusions. HD,175607 is the most metal-poor FGK dwarf with a detected low-mass planet amongst the currently known planet hosts. This discovery may thus have important consequences for planet formation and evolution theories.
We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at DL = 0.81 +/- 0.10 kpc with projected separation r = 0.92 +/- 0.16 AU. Because of the hosts a-priori-unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.
We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V=12.8 K4 dwarf GSC 03033-00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch Tc = 2454419.19556 +- 0.00020 (BJD) and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 Msun, radius of 0.70 +- ^0.02_0.01 Rsun, effective temperature 4650 +- 60 K and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 MJup, and a radius of 0.959 +- ^0.029_0.021 RJup yielding a mean density of 0.295 +- 0.025 g cm^-3. Comparing these observations with recent theoretical models we find that HAT-P-12b is consistent with a ~ 1-4.5 Gyr, mildly irradiated, H/He dominated planet with a core mass Mc <~ 10 Mearth. HAT-P-12b is thus the least massive H/He dominated gas giant planet found to date. This record was previously held by Saturn.
We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright ($K=8.8$), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Martir (Mexico). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of $R=2.37_{-0.12}^{+0.16}$ R$_{oplus}$ and an orbital period of 10.9 days. The outer, smaller planet has a radius of $R=1.56_{-0.13}^{+0.15}$ R$_{oplus}$ on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of $M_mathrm{p}$ = $13.5_{-9.0}^{+11.0}$ $mathrm{M_{oplus}}$ ($<36.8$ $mathrm{M_{oplus}}$ at 2-$sigma$) for TOI-1266 b and $2.2_{-1.5}^{+2.0}$ $mathrm{M_{oplus}}$ ($<5.7$ $mathrm{M_{oplus}}$ at 2-$sigma$) for TOI-1266 c. We find small but non-zero orbital eccentricities of $0.09_{-0.05}^{+0.06}$ ($<0.21$ at 2-$sigma$) for TOI-1266 b and $0.04pm0.03$ ($<0.10$ at 2-$sigma$) for TOI-1266 c. The equilibrium temperatures of both planets are of $413pm20$ K and $344pm16$ K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation.