Degenerate linear parabolic equations in divergence form on the upper half space


Abstract in English

We study a class of second-order degenerate linear parabolic equations in divergence form in $(-infty, T) times mathbb R^d_+$ with homogeneous Dirichlet boundary condition on $(-infty, T) times partial mathbb R^d_+$, where $mathbb R^d_+ = {x in mathbb R^d,:, x_d>0}$ and $Tin {(-infty, infty]}$ is given. The coefficient matrices of the equations are the product of $mu(x_d)$ and bounded uniformly elliptic matrices, where $mu(x_d)$ behaves like $x_d^alpha$ for some given $alpha in (0,2)$, which are degenerate on the boundary ${x_d=0}$ of the domain. Under a partially VMO assumption on the coefficients, we obtain the wellposedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems.

Download